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Abstract 
 

According to linguistics, words are broken into word segments called syllables, 

which are broken into the smallest parts of spellings — graphemes (i.e. individual letters). 

Based on the way syllables are uttered, and possibly the intonation involved, syllables can be 

submerged together or further broken into smaller segments of speech called phonemes. 

Recognising those segments is a task that Automatic Speech Recognition (ASR) research 

has shed the light on of decades. ASR has been prospering over the last few years, especially 

with the field having been introduced to Deep Learning. This project is a facilitation of 

Deep Learning in Computer-Assisted Language Learning (CALL), to help the learner of the 

English language fix erroneous parts in their pronunciations by giving them direct feedback 

about the pronunciation at hand as well as a similarity indicator on the Goodness of 

Pronunciation they present. This is an attempt to strengthen the link between CALL and 

Deep Learning, by providing a novel means of live feedback to students in a way that even 

covers parts of words (i.e. phonemes), not just the words themselves. The project combines 

a Deep Bidirectional Long Short-Term Memory Recurrent Neural Network with a mobile 

application that acts as the medium between the model and the user.  
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Chapter 1 

Introduction 

1.1 Aims and Objectives 

This project aims to design and implement a mobile application that is capable of listening 

to the user and validating as well as identifying the erroneous parts in the user’s 

pronunciation, making language acquisition easier and more productive. The desired 

method includes deploying needed mathematical approaches combined with a Deep 

Neural Network that produces reasonably accurate results. 

 

One of the key objectives of this project is to investigate engineering and Machine 

Learning techniques that have previously been used to perform speech signal processing. 

Although most engineering techniques rely heavily on the mathematical perspective of 

applicability, it is undeniable that the Machine Learning approach can be superior — for 

reasons that will be discussed thoroughly in later chapters. This will be arrived to through 

exploring popular audio signal fitting mechanisms that have been examined by researchers, 

as a measure of preprocessing speech signals. Since a lot of those techniques involve 

numerous statistical and algebraic bases, there will be a brief touch on each of the topics 

involved. Moreover, this project also scrutinises different Automatic Speech Recognition 

(ASR) techniques, such as Phonemic Transcription. It also alludes to their accuracy rate 

differences, at least from the perspective of speech signal processing.  

 

The tangible aspect of this project dictated the attempt to design and implement an 

algorithm for finding a similarity indicator between two pronunciations, and find the 

differences — if any — and present them in the form of phonemes. Even though this was 

problematic (as will be discussed later), it was an interesting exploratory process. The 

project also included the experimentation with Deep Learning before going further. The 

final tangible product includes a mobile application that utilises Deep Learning in making it 

easier for users to test their pronunciations and find their weaknesses in their language-

learning journey.  

1.2 Anticipated Outcomes 

Language-learning is one of the aspects that are unavoidable in the practical life. This opens 

up doors for the individual as well as widens the angle of perspectives through which they 

look at the thing at hand. Learning a new language is not just about the words and the 

grammar involved, but also about the cultural variables running in accord with it. Different 

mindsets in people require different approaches of learning. Therefore, expanding the 

options of learning is a must, at this current stage of technological advancement. It is not 
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just a matter of learning anymore, but rather a matter of choosing the right medium to 

learn. 

 

 The purpose enriching this project is – in one sentence – making the learning journey 

easier on the learner. One of the major issues that second-language students encounter is the 

lack of feedback, especially when they are taking a subject as a self-taught one. Feedback is 

crucial in any form of learning. Researchers have spent substantial amounts of time trying 

to figure out and test new ways of building programs that present significantly more 

“intelligence”. In such context, when it comes to self-learning, the student-teacher 

relationship is missing, which is something that is inarguably critical. However, self-learning 

is usually self-initiated, making students’ enthusiasm and dedication likely to be stronger. 

 

 This project tries to taper the gap between the self-learning student and the virtual 

teacher, giving students a more personlised language-learning experience through live 

feedback on their pronunciation. It is built with major hope that this project betters 

students’ relationships with learning materials — interactively. 

1.3 Project Outline 

The project includes building a Deep Neural Network (DNN) that transcribes speech 

segments into a list of phonemes (i.e. building blocks of syllables). This DNN is to be used 

in a mobile application that takes care of the user’s input and gives them the feedback 

accordingly. Users can search for a word or a phrase by its spelling or choose to input by 

speaking to the application. The phrase is then uttered back to the user so that he/she can 

know the correct pronunciation of the particular phrase. Users can then pronounce it again 

and get a visual comparison between the actual pronunciation and their own.  

1.4 Structure of The Report 

Within the body of this report (Chapters 1 through 7), the most important parts of the 

system are explained and the theory behind them is discussed. However, aspects that need 

further explanation were enclosed in the appendices, as well as sections that do not 

contribute to the functional core of the project. Nevertheless, it is integral to acquiring a 

thorough understanding to have a look at the appendices. Throughout the report, the 

importance of some parts of the appendices is emphasised on within sections that directly 

incorporate details mentioned in those respective appendices. 
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Chapter 2 

Background and Motivation 

2.1 Computer-Assisted Language Learning 

Computer-Assisted Language Learning (CALL) is a generic term that manifests the deployment 

of computers and respective technologies associated with them in the language-learning 

process. This encompasses issues of material design, technologies, pedagogical theories and 

modes of instruction. Materials for CALL can include those which are purpose-made for 

language learning and those which adapt existing computer-based materials, video and the 

such [1]. CALL is a field of research and development that is constantly changing, making 

it challenging to follow and keep up with. This is attributed to the fact that CALL relies 

heavily on the technologies involved, which are real-world technologies in the first place. 

Therefore, CALL application can be thought of as a direct facilitation of existing tools and 

practices in language education.  

 

 According to Warschauer (1996), the history of CALL can be divided into three 

phases; structural, communicative and integrative [2]. Structural (i.e. behavioristic) CALL 

emerged from research back in the 1950s and through the late 1970s. Being a field that is 

highly associated with kindred fields and practices, the influence of then-prosperous 

research areas (e.g. behaviorist theories of learning) on CALL is undeniable [3]. This phase 

followed a questionnaire-like format that is presented repeatedly to students, for the 

effectiveness of systematic repetitions in learning [4]. The introduction of microcomputers 

allowed a whole new range of possibilities and marked the end of Structural CALL [3]. 

This is evident through examining major 1980s’ CALL applications, like the then-

sophisticated PLATO system [5]. 

 

 Subsequently, the CALL phase that became prominent until the early 1990s was 

Communicative CALL. Thickening the link between CALL and technological advancements, 

CALL applications boomed at this stage — mainly due to the abundance of personal 

computers. This phase emerged through the belief that Structural CALL did not involve 

real communication. Therefore, Communicative CALL focused on improving the student’s 

communication with the learning material rather than the material itself [6]. In a lot of 

models, the computer was used as a tool — or a workhorse [7]. Finally, the third phase (i.e. 

Integrative CALL) came into the light in the 1990s, and was based on multiple technological 

advances like multimedia (e.g. CD-ROM) and internet applications [3]. This phase was 

fundamentally aimed at integrating computer-mediated communication applications for 

communicative language teaching.  
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2.1.1 Development of Learning Methods 

Computer-Assisted Language Learning — having spanned multiple decades — has 

gone through a lot of changes when it comes to the way the concept is applied. In terms of 

learning, changing the means is expected to change the experience. Therefore, the 

improvements in learning journeys became more effective over time. In fact, major 

difficulties of CALL were attributed to deficiencies in computers’ performance and 

capabilities [8]. Meskill (2002) broached the subject by stating what computers cannot do,  

which includes: 

 

- Judge unexpected input 

- Provide individualised feedback beyond a predetermined list of messages 

- Engage the learner in rich negotiation of meaning characteristic of face-to-face 

interaction 

- Motivate depth and quality of engagement characteristic of human interaction 

 

Examining the above leads to the realisation that those problems do not exist anymore. 

This is due to the industry having advanced on so many levels that the issues Meskill stated 

back in 2002 sound somewhat preposterous. Consequently, CALL has benefited a great 

deal from technological advances as well as being introduced to new fields (e.g. Machine 

Learning). The manifestation of such a direct link between fields results in a state of 

constant development — which is extremely noticeable in CALL. 

2.1.2 Computer-Assisted Feedback Systems 

CALL is by no means restricted to the students’ interaction with the tools at hand 

(namely, computers, in this context). It has been extended to include teachers directly 

interacting with computers, mainly seeking computer-assisted assessment. Also called 

computer-aided marking, this sub-field was always inferior in the industry. However, it has 

been receiving more attention over the last two decades, to the point where it became a 

necessity to employ in world-class universities and other forms of education institutes. 

Denton (2003) [9] describes four different types of computer-assisted assessment; 

objective testing, electronic submission, free text analysis as well as marking assistance [10]. 

Denton mentions that objective testing includes multiple-choice questions delivered via the 

Web. While the rest of the types are self-explanatory, plagiarism testing tools are an 

example of the free text analysis that Denton mentioned. 

2.1.3 Feedback and Disfluency Detection 

In Linguistics, feedback is the mechanism of determining whether a set of 

communication requirements can be met, leading to the continuation of contact between 

parties [11]. This is what lets one conceptualise the actuality of progressing through their 

language-learning journey. Language learning feedback is a complex topic that research has 

been covering for decades. Arguably, the core of CALL feedback research is “the 

distinction between ‘acquisition’ (the gradual and implicit accumulation of L2 competence) 

and ‘learning’ (the conscious and explicit learning of L2 knowledge)” [12] — where L2 
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refers to second/foreign language. Due to the importance of corrective, constructive 

feedback in language learning, CALL research has always kept open ears for any advances 

in technology that can benefit this major aspect of language learning. In fact, discrete error 

analysis and feedback were a common feature of traditional CALL, and the more 

sophisticated programs would attempt to analyse the learner's response, pinpoint errors, 

and branch to help and remedial activities [13]. 

2.2 Automatic Speech Recognition 

2.2.1 Sound Signals 

Sound, the stimulus to auditory perception, is defined as “oscillation in pressure, 

stress, particle displacement, particle velocity, etc., propagated in a medium with internal 

forces, or the superposition of such propagated oscillation” [14]. The significance of sound 

constitutes the role it plays in communication 

among creatures. This noteworthiness is evident 

in applications of most industries and fields. 

While sound signal properties have constantly 

varying values, especially with their high 

affectedness by surrounding noise-related 

oscillations, their nature, from the physical 

perspective never changes. Figure2.1 illustrates 

how air molecule A, affected by the vibrations 

coming from the sound signal source on the left 

(in black), oscillates between positions P1 and P2, 

going back to its equilibrium position shown in the 

figure as the initial state (dark gray). The maximum displacement of an air molecule from 

its equilibrium position, be it caused by desired sound or background noise, is called the 

amplitude (Figure2.2, A). The time it takes for an air molecule to fully oscillate back and forth 

one time is referred to as the period of a sound 

wave (Figure2.2, B). The smaller the value of 

collective periods of sound waves, the higher the 

note (i.e. pitch) that we perceive. In constant 

surrounding environmental factors, increasing the 

volume leads to the oscillations becoming larger. 

From the representational perspective, every 

sound wave comprises of wave cycles — pairs of a 

maximum value and a corresponding minimum 

value. The number of wave cycles that occur in 

one second is referred to as the frequency of the wave, and is measured in Hertz (Hz). For 

healthy humans, it is usually possible to hear sound frequencies ranging from 20Hz and up 

to 20kHz. Finally, during oscillations of neighbouring air molecules, causing sound to travel 

through a medium of air, those molecules will be compressed close together in some 

Figure 2.2: Displacement of an air molecule over time 

Figure 2.1: Molecule oscillation near a sound source 
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regions and spread far apart from each other in other regions. The distance between two 

compressed regions is the wavelength (λ) of that sound, and is measured in meters. 

2.2.2 Speech Signals 

Speech is a complex form of sound waves. Its properties are both periodic (vowels) 

and ranging from periodic to aperiodic (consonants). In phonetics, there are speech features 

that accompany vowels and consonants, referred to as suprasegmental features (e.g. loudness, 

pitch, secondary articulation, etc.), which can 

span multiple syllables or words. Speech 

signals — being sound signals — can be 

represented in three main forms; the 

frequency spectrum, the waveform view, and 

the spectrogram. The frequency spectrum is 

used only when temporal information 

visualisation techniques are needed. In 

practice, choosing which representational 

form to use is highly dependent on the 

particular application. The waveform view 

(Figure2.3), for instance, displays the 

amplitude information over time, providing a general view of the sound wave. As visible in 

the figure, voicing periods are easily identified through the level of complexity they present. 

In the waveform view of an utterance (i.e. voicing), small portions of silence signal some 

sort of closure during articulation, usually occurring before plosive consonants (i.e. p, t, k, 

b, d, and g). On the other hand, longer 

portions of silence on a waveform view 

embody silence between words. Nonetheless, 

the most famous technique for acoustic 

analysis visualisation is the spectrogram, shown 

in Figure2.4. Spectrograms display the exact 

form and structure of speech sounds, 

representing time and frequency changes 

along the axes and depicting the amplitude 

with colors. Spectrograms of sound signals 

are most commonly used in acoustic 

phonetics, since they enable us to analyse the 

voicing periods in a more precise way. 

Interestingly enough, both Figure2.3 and Figure2.4 represent the same sentence — “No 

signal”. Regardless of which representation technique is most suitable for the application, 

spoken utterances are never produced with the same intensity, even by the same person. 

This makes it difficult to analyse sounds based only on the oscillation representations, 

especially since other voice characteristics (e.g. pitch) are changing continuously, even 

through the same speech segment — referred to as a syllable.  

Figure 2.3: Waveform view representation of a speech signal 

Figure 2.4: Spectrogram representation of a speech signal 
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2.2.3 Audio Signal Processing 

Audio Signal Processing is an engineering field that focuses on the computation of 

methods for intentional alteration of sounds. Audio signals (i.e. sounds) can be 

electronically represented in a digital or an analog format (shown in Figure2.5). Analog 

processors operate directly on electrical signals, while digital processors operate 

mathematically on the binary representation (shown in Figure2.6) of signals. No matter 

which recording process used, analog or digital, both are created by a microphone turning 

air pressure (sound) into an electrical analog signal. Sound itself is a continuous wave; it is 

an analog signal. This means that one cannot detect the precise moment the pitch changes. 

Capturing this continuous wave in its entirety requires an analog recording system; what 

the microphone receives is exactly what's written onto the vinyl disk or cassette. Analog is 

believed to be the true representation of the sound at the moment it was recorded. 

 

 
Figure 2.5: Analog/real signal 

 
Figure 2.6: Digital signal 

 

Digital sound is not a recording of the actual sound, but rather a combination of 

binary code, the utmost simplest machine language of zeros and ones, representing the 

sound's intensity and pitch at precise intervals with relative accuracy. The binary code is 

arranged in a specific pattern informing the computer how to recreate the sound itself. It is 

not a single wave the way analog sound is, but rather a composite of multiple segments 

representing consecutive moments of intensity and pitch. Where an analog recording is 

similar to the fluency of film, a digital recording is stop motion photography. 

2.3 Technical Motivation 

Comparison between two audio signals through geometric metrics is a highly exhaustive 

process. For example, Euclidean distance between two waveform representations would 

not work globally, simply because it does not account for the time frame associated with 

the voicing period, making it close to impossible to segment phonemes from a signal. 

Moreover, and since linear measures of similarity would not work in speech recognition 

applications (for speech cannot be linearly stretched to align it with another signal), it 

would be more effective to extract relevant features from both audio signals and compare 

them, rather than compare the original signals. This is expected to lead to the proficient 

identification of components of the audio signal that are enough to analyse the linguistic 

content. This comparison of audio signals usually starts with Mel-Frequency Cepstral 

Coefficients (MFCC) feature extraction, which is a representation of the short-term power 

spectrum of sound [7]. Such process makes the result invariant to pitch and amplitude 

changes. MFCC in its core is based on the linear cosine transform of a log power spectrum 

on a nonlinear mel scale of frequency. 
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Figure 2.7: 39-dimesional MFCC feature vector of a speech signal 

 

As speech similarity measurement does not stop at extracting MFCC features 

(shown in Figure2.7), the audio signals need to be aligned with one another before making a 

conclusive statement on similarity. Since some speech sounds can be stretched (e.g. 

“caaar”), extending the duration of — or even shortening — a word (e.g. “car”) before 

comparing it with another is a crucial step. This is where lies the need for dynamic 

alignment, namely, Dynamic Time Warping (DTW). With DTW, we consider one of the voice 

recordings to be a template and match the other one with it by aligning the feature vectors 

of both. Calculating the similarity — or difference — between both would then be a matter 

of finding the angle between feature vectors of both audio signals. It is worth mentioning 

that alignment can also be achieved through statistical cross-correlation or convolution, but 

in an inaccurate manner, especially if the signals are not vastly similar. In such cases, cross-

correlation would still give a numerical value, but it would be very difficult to scale.  

 

 Since MFCC reduces the frequency information of the speech signal into a small 

number of coefficients, it could be beneficial to facilitate such technique and combine it 

with a Linear Predictive Coding (LPC) method to extract features from speech. This is done to 

segment the voice recording into phonemes that can be further analysed. A DNN that is 

trained with MFCC and LPC features, respectively, would suffice for this stage. It is also 

worth mentioning that calculating the similarity percentage through a deep learning 

algorithm would limit the accuracy of comparison depending on the amount of data in the 

data set. By finding the mismatch between features as well as using the Artificial Neural 

Network (ANN) mentioned, we can determine what phoneme was erroneous in the user’s 

pronunciation. However, mixtures of statistical and probabilistic models, such as Hidden 

Markov Models (HMMs) and Gaussian Mixture Models (GMMs) have been proved superior to 

the hybrid LPC-DNN approach in phonemic transcription — extracting phonemes from 

speech. This is merely because speech signals have both linear and nonlinear characteristics. 

A hybrid HMM-GMM approach, for example, could simply maximise the performance by 

handling both types of characteristics. 

 

Over the last few years, other approaches have been closely examined by 

researchers. These approaches focused mainly on DNNs and their superiority in phonemic 

transcription. This topic was actually interesting enough for major names in Machine 

Learning (ML) and deep learning to delve into. Geoffrey Hinton et al. in DNNs for Acoustic 
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Modeling in Speech Recognition [8] showcased a thorough comparison between the ever-

famous HMM-GMM hybrid approach, and applications that involve DNNs. This led 

major teams of researchers to invest their time into improving current Speech Recognition 

applications, especially with the rise of Recurrent Neural Networks (RNNs).  

 

Computer-Assisted Language Learning has benefited from recent advances in 

Machine Learning (discussed in the next chapter), leaving automated language-learning 

feedback systems more reliable than ever. However, those applications lack the ability to 

generalise to more than a fixed sets of words (i.e. data set involved). This is typically due to 

the difficulty of processing speech signals as sound signals and differentiating between 

utterance signals and background noise. 
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Chapter 3 

Modelling ASR Tasks 
In this chapter, the most commonly used ML-based approaches in Automatic Speech 

Recognition are discussed. This is merely to give an overall idea about how different 

approaches led to more combinations of ML concepts being utilised in applications.  

3.1 Hidden Markov Models 

Hybrid HMM-GMM models are most famous in applications when it comes to phoneme 

extraction in speech recognition research, where HMMs are dealt with as phoneme-level 

statistical models. The success of which lies in the fact that Hidden Markov Models 

normalise the temporal variability whereas Gaussian Mixture Models compute the emission 

probabilities of the HMM states [19]. Another approach that received a lot of attention 

was the hybrid HMM-DNN, in which Deep Neural Networks are used to classify speech 

frames into clustered Context-Dependent states, and whose training still relied on GMMs 

to obtain initial frame-level labels [20]. The fact that most HMM-based applications, 

especially Text-to-Speech (TTS), involve considerable sophistication is attributed to the 

ineffectiveness of simple, straightforward HMM-base ASR applications in terms of 

accuracy and sensitivity to changes in operating environment [21]. Regardless of the 

method combined with HMMs, and more often that never, those models involved MFCC 

feature extraction before progressing the speech signal frames to be transcribed into 

phonemes or syllables.  

3.2 Support Vector Machines 

Even though kernelised Support Vector Machines (SVMs) (i.e. utilising the Kernel Trick) 

are non-parametric, they always perform quite well in ASR applications. This is mostly due 

to the fact that SVMs are very well-adapted to high-dimensional classification problems 

[22]. The idea of SVMs as a learning algorithm is to find a hyperplane that best separates 

classes with a maximum margin. With less hyperparameters than Deep Neural Networks, 

Margin Maximisation in SVMs allows the SVMs to outperform most nonlinear classifiers in 

the presence of noise, which is one of the longstanding problems in ASR [24]. Moreover, 

SVMs’ convergence to the minimum of the associated cost function is guaranteed as a 

simple problem of quadratic programming [22].  

3.3 Convolutional Neural Networks 

Research has also paid its dues to the fact that Convolutional Neural Networks (CNNs) are 

essentially most effective in applications where inputs have spatial features that can be 

convolved or downsampled into a more representational form suitable for classification 

[25][26]. Over the years, and despite some positive results, it has  long been argued that 
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CNNs overkill the variation along time-scale by pooling within a temporal window, 

resulting in deep fully-connected neural network dominance in modeling time variation 

[27]. However, in recent years, a newfound interest in ASR using CNNs has emerged 

through research. The motivation to use CNNs is inspired by the recent successes of the 

framework in many Computer Vision applications, where the input to the network is 

typically a two-dimensional matrix with very strong local correlations [23][28]. Speech 

Recognition made use of this by utilising information depicted in a spectrogram. Such 

applications usually involved the spectrogram being fed into the CNN as an image, making 

the phoneme recognition process invariant to some characteristics like voice pitch and 

speaker’s gender. Although the effectiveness of Convolutional Neural Networks in Image 

Processing is immeasurable, they did not exhibit significant improvement over other 

models in Speech Processing tasks [26]. 

3.4 Recurrent Neural Networks 

Over the last few years, developments in Deep Learning have made it possible for RNNs 

to be able to handle recognition and decoding simultaneously [28]. However, RNNs are 

generally hard to train because they cannot take full advantage of current highly optimised 

parallel computing facilities such as GPU [29]. Nevertheless, RNNs have led to significant 

advances in speech signal processing. This is merely because speech signals are a form of 

sequential data in the first place, and because of their nonlinear nature. The recent advances 

in RNNs are attributed to the fact that they solve the problem of other types of DNNs 

being time-independent. However, RNNs lack the ability to utilise long time-dependence in 

sequential data, due to their Vanishing Gradient Problem (VGP), making it difficult to come to 

the conclusion that a particular prediction was influenced by an early feature in the 

sequence. Another drawback in conventional (Unidirectional) RNNs is that they only take 

into account information in the sequence prior to the current input. It is worth 

emphasising on that phonemic transcription from a sequence of frames is asynchronous — 

phonemes usually span multiple frames whose boundaries are not visible in advance. 

Therefore, a solution to this asynchronicity of sequential data was formulated in Recurrent 

Neural Networks, by introducing a delay between features and labels in a simplistic manner. 

This makes the RNN take longer than the fixed time-windows, by spanning a few parts of 

the input’s future [30]. 

3.5 Deep Neural Networks and Loss Functions 

Although researchers arrived to many ways to improve the performance of DNNs for 

acoustic modelling, the problem of such models still remained — none of them truly 

achieved the end-to-end approach. However, this changed after the combination of RNNs 

with Connectionist Temporal Classification (CTC) was introduced, replacing Hidden Markov 

Models in phonemic transcription tasks. CTC is a training method for RNNs, which 

decodes the output probability distribution into phoneme sequences without requiring pre-

segmented training data [32]. This combination, which is relatively similar to Dynamic 

Time Warping (DTW) but very different in applicability, can help the DNN model benefit 
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from a variety of pronunciations without the need for a comprehensive data set of all 

possible syllable errors. Further research led to an improvement on the CTC algorithm — 

Gram-CTC, which enables the DNN model to capture longer-term dependency, and solves 

the problem of having to determine the optimal fixed set of basic units for the output 

beforehand [31]. 

3.6 Combinations of Deep Neural Network Concepts 

Recent advances in research have extensively demonstrated that combining multiple DNN 

approaches into one model can be highly beneficial. For example, phonemic transcription 

has been achieved through Recurrent Convolutional Neural Networks (RCNNs), making it 

possible to deal with temporal and frequency dependence in the spectrogram of the speech 

signal [33]. Moreover, skip-connection-based approaches, such as Residual Neural Networks 

(ResNets), have also proved effective in achieving high accuracies when the training data set 

was large enough. Long Short-Term Memory RNNs (shortly, LSTMs) have also improved the 

accuracy of transcription compared to conventional RNNs when trained with the same 

hyperparameters. This is simply because the effectiveness of LSTMs comes from the 

learning bias encoded in its architecture, rather than the way it is trained [30]. However, 

the type of RNNs that has been receiving much attention in the past few years in Speech 

Recognition research is Bidirectional LSTM RNNs (BLSTMs). The superiority of which over 

Unidirectional RNNs comes from the fact that it makes use of previous and future 

contexts in the sequence — exactly what conventional RNNs lack. The main shortcoming 

from such approach is the expensiveness of computational power required for training, as 

well as the need for more memory space for storing multiple gating neural responses at 

each time-step [34]. 

3.7 Restricted Boltzmann Machines 

A Restricted Boltzmann Machine (RBM) is a particular type of Markov Random Field 

(MRF) that has one layer of stochastic visible units and one layer of stochastic hidden units. 

There are no visible-visible or hidden-hidden connections but all visible units typically have 

connections to all hidden units [35]. RBMs have proved very effective at capturing 

sequences in acoustic modelling applications. In fact, a lot of the RBM-based research that 

used the same data set used in this project led to comparable results with Hidden Markov 

Models for similar applications. Some related previous works in the context of Automatic 

Speech Recognition have also focused their attention and experiments on considering using 

a hidden layer as well as prior knowledge in a Prior-Informed RBM system [36]. This 

yielded very high accuracies — but only for limited, structured data sets.  
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Chapter 4 

Project Specification 
This project is divided into three main segments; a deep learning model, a mobile 

application and a server-side processing component. These segments are intertwined 

through a lot of underlying connections. In this chapter, these components are explained in 

brief, mostly from the project managerial point of view. This is an attempt to clarify the big 

picture before delving into these system components in real depth (in Chapter 5). 

4.1 Project Workflow 

The project outline can be broken down into two different 

groups of stages; research and implementation. These two 

groups were highly convolved together at times, and fairly 

separated at others. The workflow is demonstrated in 

Figure3.1. 

4.1.1 Signal Similarity Measures 

 The first and foremost stage included scrutinising 

existing signal similarity measures. This was in alignment 

with the original proposal in which a similarity measure 

between two sounds was to be found without the need for a 

data set involvement. However, and due to the lack of 

tangible results in such a subfield, the plan was tweaked and 

non-ML-based approaches were neglected.  

4.1.2 Speech Similarity Measures 

 This stage set the beginning of a major step forward in the project outline. It 

included going through numerous ML approaches (SVMs, HMMs, and the such) trying to 

figure out the most feasible – and promising – approach to follow. This eventually led to 

the decision of utilising Deep Learning (as will be disclosed in Chapter 5). Although this 

stage was likely to be highly involved in the implementation, it was expected not to have a 

clear start and end. 

4.1.3 Provisional Implementation 

 This stage included implementing both the Deep Learning model as well as the 

mobile application. Although it happened over two different substages, implementation 

was expected to be temporary, depending on the results obtained along the way. 

Figure 4.1: Project workflow 
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4.1.4 Model Integration 

 Having implemented the Deep Learning model as well as the mobile application, 

this stage is a means to build the link between the two components. Here is where the 

server-side involvement happens. Although it seems fairly straight-forward, this stage was 

one of the most problematic ones, as will be explained in Chapter 5. 

4.1.5 Final Implementation 

 During this stage, the results that model integration leads to as well as the preset 

project outline are brought together into becoming the final product. There is a lot of detail 

involved in the arrival to the results of this stage, which is examined thoroughly in Chapter 

5.  

4.2 Model Expectations 

Originally, there were certain expectations for the Deep Learning model regarding inputs, 

outputs as well as effectiveness. Firstly, the model was to take speech signals as inputs. 

Although the form of which was still vague, it just made sense to build a model that 

transcribes a speech signal into the phonemes that the utterance involved comprises of. 

This means that the output of the model will include the phonemes present in the 

corresponding data set. Since the English language was the focus here, the output of the 

model was to be a matrix of P-by-N, where P is the number of phonemes in the language 

(i.e. English) and N is the number of time frames in the speech recording input. The know-

hows of the interiors of the model were still not thoroughly examined, as this was a lengthy 

process invloving multiple underlying research phases.  

4.3 Mobile App Specification 

Users are to interact with the mobile application, which utilises the DL model in the back-

end. Although the mobile aplication was only fully designed near the beginning of the 

implementation stage, there were certain functional requirements in mind that the mobile 

app needed to take care of. Since Human-Computer Interaction (HCI) is a major factor in the 

usability of mobile applications and accessibility of key features, this was to be taken into 

account as well.  

 

Furthermore, the mobile application was to have a pronunciation assistant (named 

Noon), that appears on every User Interface (UI) screen. Noon is the party that does the 

pronunciation in the mobile application (the pronunciation that users compare theirs 

against). From the more technical perspective, the application was expected to deal with 

multiple Application Programming Interfaces (APIs) server-side due to the need for searching, 

Text-to-Speech (TTS), Speech-to-Text (STT) functionalities and the such. Figure4.2 demonstrates 

the Use Cases whose back-end functional components are expected to be resident in the 

mobile application. 
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Figure 4.2: Mobile App (Noon) Use Case Diagram 
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Chapter 5 

Methodology and Implementation 
In this chapter, the project pipeline is examined thoroughly. The methods behind major 

components of the system are discussed and the tools used for every stage are disclosed. It 

is worth mentioning that subsequent to the explanation of parts of every major component 

is a Technical Specification sub-section that is rather an implementation-based clarification in 

regards to the tools used for the methodologies followed. 

5.1 Process Overview 

The focus of this section is mostly on the data flow among components rather than in-

depth descriptions of the particular parts, as those will be discussed extensively in later 

sections of the chapter. This general overview (shown in Figure5.1) is divided into five main 

stages of execution, where data flows in three different path sequences depending on the 

operation; training, validation/testing and inference. These three sequences share nine 

paths (labelled A, .. I) through which data can flow. The following sub-sections describe 

those sequences. 

 

 
Figure 5.1: Data flow through project components 

5.1.1 Training Flow Sequence 

The first stage that the system went through was training the model. However, as 

the case is with most Deep Learning models, preprocessing was performed first. During 

this stage, Training data flowed through path A in the form of voice recordings alongside 

phoneme lists (playing the role of labels), into the Feature Extraction component. Feature 

vectors along the labels were passed through path D, where those features were aligned 

with their corresponding phonemes. Finally, both packets went through path E and into 
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the Model using which the Bidirectional Recurrent Neural Network (BRNN) was trained. The 

training data flow through the pipeline stops here. 

5.1.2 Validation/Testing Flow Sequence 

In order for the model to be trained properly, it is desirable for it to be periodically 

evaluated, and that is exactly where the need for validation data comes into play. Through 

calculating the error rate the model yields on the validation set at any given point, we can 

know how accurate it is. This is the essence of training. Subsequently, the model will tune 

its parameters based on the frequent evaluation results on the validation set. Furthermore, 

the final evaluation stage (namely, testing) includes test data being passed into the Model. 

For validation and test data, the flow goes through paths B and C, respectively. After 

feature vectors are extracted, there is no need for data to pass through the Phoneme 

Alignment component, since this data is not labelled — as far as the Model is concerned. 

Therefore, data will flow through path G, straight into the Model. Again, flow sequence 

will stop here, as the analysis component is related to the Mobile Application. 

5.1.3 Inference Flow Sequence 

Typically, inference data flows from the Mobile Application as a voice recording 

straight into the Feature Extraction part. Feature vectors are passed thorugh path G and 

into the BRNN to infer the output labels for such a sequence of inputs. The labels are then 

passed onto the Phonemic Analysis component (following path H), which returns – 

through I - the similarity percentage between both sequences of phonemes. It also returns 

the actual phonemes as infered by the BRNN Model component. Recently acquired data 

will then be transformed and shown is a presentable form onto the mobile application’s 

interface. It is worth mentioning that there were implementation issues faced that directly 

affect this typical data flow. These issues are explained in section 5.5. 

5.2 Data Acquisition 

Measuring application performance based on how generalisable the model is necessitates 

the search for a data set whose data is as diverse as possible. This search arrived at the 

DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus (TIMIT), which comprises of 

utterances of 10 different sentences by 630 speakers [40], resulting in a collection of 6300 

sentences in about 5.4 hours of voice recordings, all sampled at 16kHz. This was a joint 

effort among Defense Advanced Research Projects Agency (DARPA), Massachusetts 

Institute of Technology (MIT), Stanford Research Institute (SRI), and Texas Instruments 

(TI). It is worth mentioning that this data set was chosen over data sets like Kaldi and 

CMUSphinx due to the wide fame it receives from researchers. On the other hand, said 

alternatives proved superior when it comes to the vast applicability in production-level 

systems as well as interoperability support. This project does not require such cross-

platform functionality, thus, it follows the steps of related research. 
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5.2.1 Diversity of Speakers 

The TIMIT data set was built for the development and evaluation of of Automatic 

Speech Recognition systems [40]. Therefore, collaborators tried to cover as many dialects 

as possible (8 major dialects in American English). The dialect-gender distribution is as 

follows: 

 
Table 5.1: TIMIT data set dialect breakdown 

Dialect Region Male Female Total 

New England 31 (63%) 18 (27%) 49 (8%) 

Northern 71 (70%) 31 (30%) 102 (16%) 

North Midland 79 (67%) 23 (23%) 102 (16%) 

South Midland  69 (69%) 31 (31%) 100 (16%) 

Southern  62 (63%) 36 (37%) 98 (16%) 

New York City 30 (65%) 16 (35%) 46 (7%) 

Western 74 (74%) 26 (26%) 100 (16%) 

Military Brat 22 (67%) 11 (33%) 33 (5%) 

Total 438 (70%) 192 (30%) 630 (100%) 

5.2.2 Distribution of Spoken Material 

As the selection criteria attempted to maximise the variety of allophonic contexts 

found in the texts [41], sentences given to speakers were designed to cover three different 

aspects; dialectal variance, phonetic diversity and phonetic compactness. Dialect sentences, 

which were meant to highlight dialectal variants in speech, were read by all 630 speakers. 

Phonetically-diverse sentences were selected to add diversity in sentence types and phonetic 

contexts, while phonetically-compact sentences were designed to provide a good coverage of 

pairs of phones with extra occurrences of phonetic contexts thought to be either difficult 

or of particular interest. 
Table 5.2: TIMIT data set sentence types 

Sentence Type Sentences Speakers Total Sentences per speaker 

Dialect 2 630 1260 2 

Compact 450 7 3150 5 

Diverse 1890 1 1890 3 

Total 2342  6300 10 

5.2.3 Data Format 

Figure5.2 shows how parsing through the TIMIT data set works. The data set 

provides 4 different files for every utterance by any speaker. Each file is more useful for 
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some applications rather than others. The inclusion of different types was a measure of 

thoroughness and maximised usefulness [41]. These data formats are as follows: 

 

.wav SPHERE-headered speech waveform file, downsampled to 16kHz. 

.txt Associated orthographic transcription of the words the person said. 

.wrd Time-aligned word transcription. 

.phn Time-aligned phonetic transcription. 

 

The focus in this project was on the PHN and WAV files because of the data form they 

provide. It is worth mentioning that because of the SPHERE header in WAV files, an extra 

preprocessing step was needed.  

 

 
Figure 5.2: TIMIT data set breakdown 

5.3 Data Preprocessing 

5.3.1 MFCC Feature Extraction 

Identifying the linguistic content in a speech signal can only be reliable when 

certain features are extracted from the signal, discarding those that do not contribute to the 

generalisability of the application’s model. For instance, features that contain coefficients 

relating to the emotions of the speaker should be excluded for the purpose of this project. 

Mel-Frequency Cepstral Coefficient (MFCC) features are the most commonly used when it 

comes to Speech Recognition applications. In a form of reverse-engineering sound 

production, the efficiency of this technique is attributed to the fact that MFCCs represent 

an envelope of the short time power spectrum which describes the shape of the vocal tract 

of a human being’s — exactly what determines the sound coming out [37]. This feature 

extraction method has been extensively examined and improved by researchers over the 

years, resulting in it being a state-of-the-art approach. Although MFCCs approximate the 

human system response more than any other descriptors, the robustness of these values is 

only reliable to an extent, as the effectiveness of which deteriorates with additive noise 

[38]. The most important steps of MFCC feature extraction are examined in the following 

subsections. Figure5.3 demonstrates the steps that MFCC extraction encompasses.  
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Figure 5.3: MFCC feature extraction pipeline 

5.3.1.1 Pre-emphasis 

Pre-emphasis, or the amplification of high frequency regions in a signal, might not 

have an integral effect on performance in modern systems. However, it is still used as part 

of the feature extraction process, as it was noted that higher frequencies are more 

important for signal disambiguation than lower frequencies [53]. This is supported by the 

fact that feature extraction as a process, in essence, implies that the properties of the 

system are being viewed as emphasising certain aspects of the signal while reducing or 

removing others. 

5.3.1.2 Framing and Windowing 

In its nature, human speech is slowly varying over significantly small periods of 

time. Therefore, framing the speech signal is a key step in the process, forcing spectral 

analysis to be applied on duration blocks rather than the full signal. This is done through 

dividing the speech signal into small time-based slices (i.e. frames) — hence the name, 

framing. By convention, these duration blocks usually span 20 ms each. Pragmatically, 

framing introduces amplified levels of discontinuity in speech samples. This is remedied 

through windowing, where each frame is multiplied by a window function, attenuating the 

values of the samples at the beginning and end of each frame. The Hamming Window is 

commonly used here. It decreases the frequency resolution of the spectral analysis while 

reducing the sidelobe level of the window transfer function [39]. 

5.3.1.3 Fast Fourier Transform 

In general, the core of signal processing lies at the extent to which Fourier analysis 

dictates its effectiveness. Such signal processing revolves around the idea that any 

periodically-repeating waveform can be expressed as a sum of sinusoids, each scaled and 

shifted in time by appropriate constants. This means that signal W0 in the Figure5.4 is 

composed of multiple signals (namely, W1 through W5) that are summed up into one 

frequency function. Simplistically, the signal depicted by waveform W0 in the figure is 

actually the sum of the air pressure difference of all the waveforms composing W0 at any 
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given time on the time-intensity 

graph. Building on this idea, a 

microphone records sounds by 

picking up on the air pressure at many 

points in time. A Fourier Transform 

plays the role of the link between a 

signal in the time domain and the 

same signal in the frequency domain. 

In this context, this refers to a form 

of reverse-engineering the signal 

picked up by the microphone, and decomposing it into the waveforms whose sum results 

in the particular signal at hand.  

5.3.1.4 Mel Filter Bank Processing 

 In the Fast Fourier Transform (FFT) spectrum, voice signals do not follow a linear 

scale. This is associated with the presence of various frequencies in such spectrums. Huang 

et al. explain how this could be remedied by using Mel Filters — a set of triangular filters 

that are used in computing a weighted sum of spectral components, simulating the 

characteristics of the human ear, and resulting in a non-linear mapping of the audible 

frequency range [42]. 

5.3.1.5 Discrete Cosine Transform 

An Acoustic Vector is a set of MFCCs. Each of these coefficients is a descriptor of 

the log Mel Filter Bank associated with it. This is usually calculated through a Discrete Cosine 

Transform (DCT) that plays the role of the converter of a log Mel spectrum into the time 

domain. Obtained coefficients in the time domain are of different orders. This is where the 

resemblance between MFCC extraction and the vocal tract of a human being’s. Lower-

order coefficients represent the vocal tract shape, while higher-order coefficients represent 

periodicity in the waveform (i.e. excitation information) [43]. 

5.3.2 Framewise Phoneme Alignment 

In order to be able to feed the labels — or phonemes, in this context — into the 

model, matching every phoneme in the data set with its corresponding frames that it spans 

is a necessity. This is done while looping through the files present in the data set. The 

phonemes actually have their own numerations (as explained in section 5.2.3). Therefore, 

matching the two sequences is a fairly straightforward task. As illustrated in Figure5.5, 

sequence S1 is an MFCC coefficient vector Vi coming from one of the MFCC feature 

vectors. Elements in S1 correspond to frames in the speech signal, where the first element 

has index 0 and the last element is aligned with the total duration value of the voice 

recording. It is also shown in the figure how phonemes (i.e. elements in sequence S2) can 

span multiple frames, and are usually separated by a special blank phoneme ε which 

symbolises periodical silences in speech. 

 

Figure 5.4: Basic representation of a signal decomposition process 



Methodology and Implementation 

 

22 
 

 
Figure 5.5: Framewise Phoneme Matching  

5.3.3 Separating Data Subsets 

The available data set needs to be divided into training, validation and testing sets. 

According to Alex Graves et al. in a very similar application [30], the research team 

predicted to reach presentable accuracies through taking 75% of the data as training data 

and 25% as test data, given that validation data was to be randomly chosen from the 

training data but kept constant throughout all relevant experiments. 

5.3.4 Technical Specification 

The steps and stages discussed in the previous sections were implemented in 

Python3.7 using multiple related libraries (NumPy, Scikit-learn, Librosa, JSON, 

Python_Speech_Features, etc). This implementation also included converting the WAV 

files from the NIST encoding into RIFF, in order to change the headers in those files. This 

conversion was needed because most available libraries do not support the former. Each 

file was segmented and appended to a global NumPy array of features along with its 

associated labels (imported from the corresponding PHN file). This was performed on 

every sentence in the data set. The data in every feature vector was aligned with its 

corresponding phoneme code (0-60, plus the blank character). Finally, all the preprocessed 

data needed for the model was encapsulated in a Python class and serialised into a PKL file 

in order not to have to preprocess the data every time the model is trained. 

 

5.4 The Model 

5.4.1 Network Architecture: LSTM 

 As discussed in Chapter 3, LSTM-based Recurrent Neural Networks have presented 

significant improvements in speech recognition applications. Therefore, a similar 

architecture was chosen. ANNs are explained extensively in Appendix A. The fact that 

ANNs learn features at different levels of abstraction, rather than rely on hand-crafted and 

domain-specific features, is one of the major advantages of using ANNs. This also runs in 

accordance with the trend of building end-to-end applications, minimising the need for 

expert knowledge and feature-specific preprocessing [44]. LSTM architectures incorporate 

purpose-built memory cells that capture temporal dependencies natively and scale well with 

the time lag between important events [46].  
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The model of this project has LSTM blocks at its core. Such a block features 

memory cells that are capable of maintaining their state over time, as well as normal and 

fully connected units that regualte the information flow into and out of the LSTM block. 

The “memory” of an LSTM block lies within an internal cell state (shown in Figure5.6). 

Moreover, the block contains four “gates” — input, output, forget, and candidate state.  

 

 
Figure 5.6: LSTM cell architecture 

Each of the gates is a small RNN with dimensions 𝑑 × ℎ where 𝑑 is the dimension of the 

input vector 𝑥𝑡 and ℎ is the dimension of the cell state 𝐶𝑡 and LSTM output ℎ𝑡 , also called 

the hidden size. Each of these gates interact with the cell state, controlling how new 

information entering the LSTM will alter it. The equations that describe the forward pass 

of an LSTM block are stated and explained below.  

 

The forget gate controls how much the current input will influence the removal of 

information from the previous cell state. 

𝑓𝑡 =  𝜎(𝑊𝑓  ∙  𝑥𝑡 +  𝑅𝑓 ∙  ℎ𝑡−1 +  𝑏𝑓) 

 

The input gate controls how much the current input will influence the addition of new 

information to the current cell state. 

𝑖𝑡 =  𝜎(𝑊𝑖  ∙  𝑥𝑡 +  𝑅𝑖 ∙  ℎ𝑡−1 +  𝑏𝑖)  

 

The output gate controls how much the current input will directly influence the current 

output of the network. 

𝑜𝑡 =  𝜎(𝑊𝑜  ∙  𝑥𝑡 +  𝑅𝑜 ∙  ℎ𝑡−1 +  𝑏𝑜) 

 

The candidate stage gate is the representation of new information created by the current 

input. 

𝐶�̃� =  tanh(𝑊𝐶  ∙  𝑥𝑡 + 𝑅𝑜 ∙  ℎ𝑡−1 +  𝑏𝐶) 
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The current cell state is a combination of things to be forgotten and things to be 

assimilated. 

𝐶𝑡 =  𝑓𝑓  ⊙ 𝐶𝑡−1 +  𝑖𝑡 ⊙  𝐶�̃� 

 

In a nutshell, with an LSTM architecture like ours, the MFCC inputs 𝑥𝑡 are combined with 

the previous outputs ℎ𝑡−1 to alter the cell state 𝐶𝑡 and to output a new prediction ℎ𝑡 . 

Context from all previous inputs is incorporated into the new cell state 𝐶𝑡, and therefore, 

the LSTM can take into account temporal dependencies that are very far apart. This is what 

the strength of LSTM-based speech recognition applications is attributed to — capturing 

long dependencies in sequences. In such applications, and in accordance with our notation, 

the network output is a combination of the input and the current cell state: 

ℎ𝑡  =  𝑜𝑡 ⊙  tanh(𝐶𝑡) 

where, 

𝑥𝑡 

ℎ𝑡 

ℎ𝑡−1 

𝑓𝑡 , 𝑖𝑡, 𝑜𝑡 

𝐶�̃� 

𝐶𝑡 

𝐶𝑡−1 

𝑊𝑓 , 𝑊𝑖, 𝑊𝑜 , 𝑊𝐶 

𝑅𝑓 , 𝑅𝑖, 𝑅𝑜 , 𝑅𝐶 

𝑏𝑓 , 𝑏𝑖, 𝑏𝑜 , 𝑏𝐶 

= the current input vector 

= the current LSTM output 

= the previous LSTM output 

= the output of the forget, input and output gates 

= the output of the candidate state gate 

= the current cell state 

= the previous cell state 

= the input weights for gates 𝑓𝑡 , 𝑖𝑡, 𝑜𝑡, and 𝐶�̃� 

= the recurrent weights for gates 𝑓𝑡 , 𝑖𝑡, 𝑜𝑡, and 𝐶�̃� 

= the bias weights for gates 𝑓𝑡 , 𝑖𝑡, 𝑜𝑡, and 𝐶�̃� 
 

Using these mechanisms during training, the LSTM can learn to discriminate between 

relevant and irrelevant context by adjusting the weights of its gates [45]. During the 

inference process, the output of the LSTM block ℎ𝑡 is a combination of both the current 

input and the cell state, as it has been “sculpted” from the previous inputs, via their passage 

through the four gates. To sum up, given an input sequence 𝑋 = (𝑥1, … , 𝑥𝑇), an LSTM 

Neural Network computes its output squence 𝐻 = (ℎ1, … , ℎ𝑇) by evaluating the 

equations mentioned earlier. The following algorithm demonstrates the procedure: 

 

Algorithm 5.3: Forward LSTM Pass 

    Input: X 
Output: H 

    𝐶0  ←  0 

    ℎ0  ←  0 

        for every sequence frame 𝑥𝑡, 1 ≤ t ≤ T do 

            𝑓𝑡 =  𝜎(𝑊𝑓  ∙  𝑥𝑡 + 𝑅𝑓 ∙  ℎ𝑡−1 +  𝑏𝑓) 

            𝑖𝑡 =  𝜎(𝑊𝑖  ∙  𝑥𝑡 + 𝑅𝑖 ∙  ℎ𝑡−1 +  𝑏𝑖)  
            𝑜𝑡 =  𝜎(𝑊𝑜  ∙  𝑥𝑡 +  𝑅𝑜 ∙  ℎ𝑡−1 + 𝑏𝑜) 

            𝐶�̃� =  tanh(𝑊𝐶  ∙  𝑥𝑡 +  𝑅𝑜 ∙  ℎ𝑡−1 +  𝑏𝐶) 

            𝐶𝑡 =  𝑓𝑓  ⊙ 𝐶𝑡−1 +  𝑖𝑡 ⊙ 𝐶�̃� 

            ℎ𝑡  =  𝑜𝑡 ⊙ tanh(𝐶𝑡) 
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5.4.2 Network Architecture: Bidirectional LSTM 

Due to the asynchronous nature of speech, the model needs to take into account 

both previous and future information in the sequence when predicting a label (in a 

classification problem like ours). Therefore, a Bidirectional LSTM RNN was chosen, in 

which two identically-sized LSTM blocks are used in parallel, where one processes the 

input sequence in a forward manner (1st through T-th frame), while the other processes the 

input sequence in a backward manner (T-th through 1st). Figure5.7 demonstrates the generic 

form of the BRNN. The project included an initial model design, which was altered 

through experimentation — as will be discussed in Chapter 6. This initial model design 

includes an input layer with 26 input neurons (one for each MFCC feature vector. The 

model also contains two bidirectional hidden layers, each of which utilises two LSTM layers 

(one backward and one forward) that have 100 units each, a fully connected layer [30], and 

an output layer (this descibes model EXP04 in Appendix D). The output layer has 62 units 

(61 phonemes + a blank character). In other words, the first hidden layer consists of an 

LSTM network with two parallel LSTM blocks (a Bidirectional LSTM). The second layer is 

identical to the first. The suceeding layer is a fully connected layer that connects the 

outputs of both the parallel blocks to the output of the ANN as a whole. 

 

 
Figure 5.7: Bidirectional LSTM RNN architecture 

 

It is common practice to reduce the number of phonemes  — or classes — down 

to 44 by merging those with very similar sounds. Therefore, it could be beneficial to try 

both sets of classes and rely on the accuracy of the model for the given architecture to 

determine which set of classes should be the standard one in the project. Moreover, a 

logistic sigmoid loss function will be used in the hidden layers. For the output layer, the 

CTC loss function will be used, merely because of its invulnerability to continuous 

occurrences of phonemes (e.g. “heeeelllllloooo” would be transcribed as “hello”). 
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5.4.3 Connectionist Temporal Classification Loss Function 

In RNNs, the fact that input and output sequnces are not necessarily synchronised 

raises questions regarding the way they are intertwined within the ANN. In reality, this 

asynchronicity does not affect the order of input components (i.e. signal frames) and 

output components (i.e. phonemes). In other words, the output will follow the same order 

as the input, even if there is no time-based synchronicity between them, thus preserving the 

temporal correspondence between the input and output tensors. For instance, if the input 

signal describes the sentence “Hello, world”, then the output is — typically — expected to 

represent the phonemes associated with “hello” before the ones uttered in “world”.  

 

The need for a decoding-based loss function arises from the fact that every 

phoneme depends on the preceeding phonemes classified. Therefore, the “choice” of a 

phoneme will affect the succeeding ones to come. This is usually apparent in words that 

contain duplicate letters. For example, if the time-aligned output of the model is 

“bbooott”, then we can remove all the duplicates, leaving us with “bot”. This means that if 

the transcription was supposed to arrive to the word “boot” instead, the model would not 

have given that result. In other words, the issue of exactly which duplicate to remove is 

integral to the generalisation of the model. Figure5.8 demonstrates how CTC attempts to fix 

this in a generic manner. 

 

CTC is a generic loss function to train systems on sequence problems where the alignment 

between the input and output sequences is unkown. Given an input sequence 𝑋 of length𝑇, 

CTC assumes the probability of a length 𝑇character sequence 𝐶is given by: 

 

𝑝(𝐶|𝑋) =  ∏ 𝑝(𝑐𝑡|𝑋)

𝑇

𝑡=1

 

 

This assumes that character outputs at each timestep are conditionally independent given 

the input [17]. The distribution 𝑝(𝑐𝑡|𝑋) is the output of some predictive model. CTC also 

assumes that our ground truth transcript is a character sequence 𝑊 with length τ where 

τ ≤ T. As a result, we need a way to construct possibly shorter output sequences from our 

Figure 5.8: Connectionist Temporal Classification Decoding 
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length 𝑇 sequence of character probabilities. The CTC collapsing function achieves this by 

introducing a special blank symbol, denoted by the blank phoneme class in the BLSTM (i.e. 

ε), and collapsing any repeating characters in the original length 𝑇 output. This output 

symbol contains the notion of “junk” or other so as to not produce a character in the final 

output hypothesis.  

 

 The strength of CTC comes from its ability to allow true end-to-end training 

without requiring any frame-level alignment between inputs and outputs. By summing up 

over all sets of label locations that yield the same label sequence, CTC determines a 

probability distribution over possible labellings, conditioned on the input sequence. A CTC 

layer has as many output units as there are distinct labels for a task, plus an extra blank 

character unit for “no label”. The activations of the outputs at each timestep are 

mormalised and interpreted as the probability of observing the corresponding label (or no 

label) at that point in the sequence.  

5.4.4 Phonemic Similarity 

From another perspective, the project as a whole requires a phonemic similarity 

metric. As discussed in Appendix B, sequence matching algorithms like Levenshtein Error 

Distance, Phonolgical Edit Distance and Trigram Comparison suffer from length 

dependency. However, and since phoneme transcription generally yields more phonemes 

than there are characters in corresponding words, such dependency is likely to lead to 

insufficient accuracy in mesurement. Therefore, said algorithms were excluded. This bias 

towards some variable (i.e. length, in this context) also caused the Jaro-Winkler algorithm 

to be put aside, as it gives higher weights to characters in the beginning of the sequence. 

The phonemic similarity measure chosen is the Khorsi Similarity Metric. This is merely 

because it gives more weights to characters that are of greater importance to the word as a 

whole, regardless of where they fall in the sequence.  

5.4.5 Technical Specification 

 The model was implemented in Python3.7 using Google’s TensorFlow (TF) Deep 

Learning library. This is due to the wide support as well as reliable documentation provided 

by the company on Bidirectional RNNs, compared to Theano, Keras or PyTorch. Though 

PyTorch is superior when it comes to DL data visualisation, TF still has the higher foot in 

being well-documented. Moreover, this choice looked more promising for integrating the 

model into the mobile application, as Google released a TF-like mobile device tool (i.e. 

TensorFlow Lite) which supports model integration through frozen checkpoints. Finally, 

the Khorsi Similarity Metric was utilised using the Python library Phonological 

CorpusTools. 
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5.5 The Mobile Application 

5.5.1 Development Parameters 

The mobile application was developed to operate on AndroidOS devices of API 

version 22 and above. The front-end code is written in XML, and is divided into 

Fragments and Activities. The back-end code is divided into three major sections; Speech-to-

Text (STT) conversion, Text-to-Speech (TTS) synthesis, and the DL model utilities — all 

written in Java. 

5.5.2 Speech-to-Text Functionality 

 The mobile app includes a voice search functionality through which the user can 

utter a word or a sentence that they would like to find out the correct pronunciation of. 

This means that the user does not have to pronounce the phrase correctly, but rather say 

something as close to it as possible. Regardless of the STT tools used, a crucial part of the 

process was to record the user pronouncing the search term or phrase. This is merely for 

uses by other components in the application. For example, the user should be able to hear 

the app’s pronunciation as well as their own before they choose to move onto the similarity 

analysis section, so that they can hear the difference for themselves. Therefore, there 

needed to be a part of the app that records while recognising (i.e. transcribing) the speech 

signal. Although Android has a built-in speech recognition tool (called SpeechRecognizer), 

it does not support the simultaneous execution we are looking for. Android’s 

SpeechRecognizer performs live speech recognition, but it does not support saving the 

voice recording. Moreover, Android does not allow multiple built-in services to be run 

simultaneously. Meaning, as a security measure, Android does not allow the VoiceRecorder 

function to operate alongside SpeechRecognizer. This is a major issue in the subtlty of 

execution flow. 

 

Since the STT transcription functionality is of great importance to the app, other 

means of speech recognition were examined — Google Cloud Platform (GCP), Amazon Web 

Services (AWS) and Microsoft Azure Cloud Computing platforms. STT was eventually 

implemented using Google Cloud Speech (GCS) API. Multiple cloud platform APIs were 

tested, specifically Amazon Transcribe and Microsoft Azure Cognitive Speech Services. However, 

GCS proved superior in the variety of languages and accents that it supports (over 120).  

The final implementation of STT includes the app using the built-in VoiceRecorder 

functionality to record the user uttering the phrase in mind. This recording is passed as a 

Pulse Code Modulation (PCM) onto the Cloud Speech API, which returns the transcription of 

the speech uttered in the speech recording. It is worth mentioning that audio file formats 

like MP3 were not used in this project, as their nature dictates the loss of a lot of details — 

trimming the audio file into only the frequency domain that we, humans, can hear, even 

though there could be useful acoustic data beyond our hearing capacity (20kHz).   
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5.5.3 Text-to-Speech Functionality 

 From another perspective, Text-to-Speech (TTS) is the mobile app’s way of 

determining the actual pronunciation the user is looking for. This also recquired the search 

for an API, as Android’s built-in tool (namely, Android Speech API) does not support 

saving the synthesised speech voice recording. Meaning, the same problem faced with 

Android SpeechRecognizer was faced with Android Speech API. This introduced the need 

for an alternative, also involving Cloud Computing platforms. Although GCP has a very 

reliable TTS API, AWS was chosen over it. GCP, just like Microsoft Azure, does not 

support saving the utterance in lossless WAV with the same header. It uses a different 

encoding scheme for such file formats. Therefore, AWS’ TTS API (namely, Amazon Polly) 

was chosen here. The API takes a string as an input and returns the pronunciation of it as a 

PCM file (which is dealt with the same way as the STT file). 

5.5.4 Model Deployment 

 The model is at the core of the project as a whole. The form in which it was saved 

expects two WAV files — in RIFF encoding — to be input into the model, following the 

input tensor specification. The model then performs the phonemic transciption on both, 

consequtively, and passes the phoneme vectors onto the phonemic similarity measurement 

code, which returns the final transcriptions as well as the similarity percentage. Therefore, 

there is some preprocessing and postprocessing involved at every inference. 

  

Even though Google’s TensorFlow Lite is getting more famous, especially due to 

the wide cross-functional interoperability with TensorFlow, it led to the biggest 

implementation issue faced in this project. Since inference does not only rely on the model 

itself (as a frozen checkpoint), but also on the preprocessing and postprocessing involved, 

TensorFlow Lite was unusable. The TFLITE file that checkpoint freezing yields can only 

be so useful. It only includes the model’s body — as an ANN. Consequently, there arose a 

need for breaking the source code into code that can be frozen into a TFLITE file and 

code that needs to be run as is — in Python. Android does not natively run Python code. 

Rather, a Python interpreter would need to be installed on the same phone. This means 

installing two mobile apps only to use one. Therefore, the option was overthown.  

 

Cloud Computing platforms, again, seemed more promising. GCP’s Compute 

Engine was utilised in the mobile application, as the mobile application was already 

authenticated with the platform (using Cloud Speech API). However, it turned out that the 

authentication process for the two APIs differs. Subsequently, authenticating to Compute 

Engine was initiated, but it eventually failed. Another security measure was that GCP could 

not let an Android application authenticate two instances for the same use at the same 

time. Breaking the authentication into two parts was out of the question (for reasons that 

will be expalined in 5.5.5). Therefore, AWS’ Elastic Compute Cloud (EC2) API was 

implemented instead.  

 

Migrating the model to the Cloud includes uploading all the Python code needed 

for inference and any processing related to it on the Cloud, and accessing it through a Secure 
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Shell (SSH) request to execute the code and receive the results from it — much like 

executing the project through the Terminal. Therefore, a virtual CPU instance was created 

on EC2 and accessed through an SSH request from an Ubuntu-running computer. This 

was successful, but led to a different kind of a problem. The mobile application needed to 

do the same (i.e. request an SSH channel and authenticate it using valid AWS credentials). 

Android apps can easily start an SSH channel, but attaching a file to it can be tricky, if the 

permissions are an issue. As a security measure, AWS requires the credentials to be in an 

encrypted PEM file whose access permissions are set to: “Owner → Read-Only” and “Other 

→ None”. On Ubuntu and other operating systems, this is simply a matter of changing 

permissions to the required ones so that the SSH channel can authenticate to EC2. 

However, Android does not support files with such permissions unless they are set as an 

Application Signature. Such a case is only applicable in apps that have already been verified 

and are currently on the App Store.  

 

 Android applications can create a File instance – in code – and set the permissions 

of it to read-only. However, this does not include the party with Owner privilages (namely, 

the app itself). Adding the PEM file to the application is one of the worst practices out 

there if the application is production-level. But, since the application is for academic 

purposes, adding the PEM file to be compressed alongside the rest of the files into an 

executable APK file was also tested. However, the same permissions problem was faced. In 

short, an app cannot create a file, save it on the Android device and change its Owner’s 

permissions to read-only, as the Owner is the app itself and it needs to be able to modify it 

all the time. Other parties’ access permissions can be set to None or Read-only. Just not 

the Owner’s 

5.5.5 Multithreaded Components 

 An long-lasting issue that was faced was the limitation caused by Android’s security 

measure of “No network operations should be on the main thread”. Android forces apps 

to use their respective main threads only for UI-related operations. Any network access, 

download, upload or other operations that can run simultaneously alongside the UI should 

be running on different threads. Therefore, evey API authentication needed to be 

performed on a separate thread. This introduced multthreading-related issues (e.g. when 

one thread is waiting for a result from another thread that has not finished executing). This 

“forcable” multithreading was implemented successfully.  
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Chapter 6 

Evaluation and Results 
In this chapter, the evaluation criteria used in determining the effectiveness and efficiency 

of the model are laid over. This also includes the evaluation measures taken into account. 

The chapter also discusses the overall results obtained from experiments (included in 

Appendix D: Experimental Trials) as well as justification of the best results obtained. 

6.1 Evaluation Criteria and Reliability Measures 

In Automatic Speech Recognition systems, evaluation approaches are usually categorised 

into subjective and objective approaches [REF]. The former includes direct human 

involvement in the measurement process, while the latter does not require human 

involvement (testing is done through voice recordings). This clear line between both 

categories is attributed to the fact that approaches involved in each are very different. 

Although they yield reproducible results, objective methods are usually hard to build, as 

replicating or simulating testing environments that resemble real-life situations is not a 

straightforward task. On the other hand, subjective evaluation measures are usually more 

implementable, but less reliable [54]. This is mostly due to the fact that, with semantic 

content, humans are not expected to perform high-quality performance measurements on 

standardised scales across applications.  

6.1.1 Bias-Variance Tradeoff 

 It is undeniable how strong the effect of model architecture is on the model’s 

generalisation [55]. This is usually arrived to through experimentation, as measuring 

generalisation is specific to the model and the data set on which it was trained. With 

Machine Learning in general, reliability of models is determined by the presence (or 

absence) of overfitting and underfitting. Overfitting (i.e. high-variance) in models refers to 

the result of model training when the model learns too much. In other words, the model 

can learn the desired features as well as the scattered noise around those features. This can 

usually be attributed to over-training, in which the model is left to train for longer than 

needed to the point where it starts learning “unnecessary” patterns. On the other hand, 

underfitting (i.e. high-bias) refers to the situation where the model does not learn enough or 

capture useful patterns from the training set. This can usually be “blamed” on the data set 

or the data preprocessing involved prior to training. In Machine Learning, there is a 

tradeoff faced in every application between the two (bias and variance) for determining the 

best generalisation performance that minimises both sources of error. It is worth 

mentioning that, in speech recognition systems, models are more likely to suffer from 

overfitting rather than underfitting. This is due to the fact that the recording environment 

can include too much noise — and so can the voice recordings. Therefore, a fixed 
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sampling rate usually suffices when it comes to regulating the amount of noise we want the 

voice recording to capture or present.  

6.1.2 Dimensionality Reduction 

 ASR systems still rely, to a great extent, on the feature set extracted from the input 

speech. One of the problems that are usually faced with such applications is the high 

dimensionality of the feature space corresponding to the large number of temporal features 

extracted. Physical system parameters can also worsen this dimensionality, depending on 

the physical components involved in the recording and frequency transmission of sound. 

Although MFCC feature extraction compresses the speech signal, it does not overcome the 

Curse of Dimensionality — the amount of computations and data required for training a 

model grows exponentially with the increase of the dimensionality of feature vectors. 

 

Aiming for higher recognition accuracy dictates the need for feature dimensionality 

reduction, ideally while preserving discriminability between phonetically different sounds 

[47]. High-dimensional acoustic representations of fetures do not imply better results, but 

rather does the nature of extracted features. Wang and Pilawal mention: “[…] with the 

increase of the dimensionality of feature vectors, more training data are needed to train the 

system models. […] When the number of features increases faster than the increase of the 

number of training data, the system models obtained may lose the generalisation properties 

because of insufficient training data” [48]. Notwithstandingly, given enough dimensions, a 

group of patterns may be split up in any arbitrary way, likely leading to better 

representations for discrimination on the training set, making higher-dimensional feature 

spaces more prone to overfitting. Interestingly, the best representations for generalisation 

to the test set are usually succinct [56]. Too detailed a representation may also represent 

characteristics of the particular training set that will not be present for independent data 

sets — forcing the model to learn set-specific noise and likely resulting in overfitting. 

Finding a good set of generalisable features in a perceivably moderate-size feature dimension 

space is a challenging process that relies heavily on experimentation.  

6.1.3 Accuracy Metrics 

 Model performance evaluation metrics are determined by the nature of the problem 

that the model is trying to solve. When it comes to classification, the Confusion Matrix is one 

of the most frequently used accuracy measures. Confusion Matrices help identify the 

effectiveness of a classifier in a class-based manner, breaking classifications into the 

structure shown in Table6.1. It is worth mentioning that the performance metrics to come 

rely heavily on the values extracted and presented within the confusion matrix. Since the 

outputs simply would not be visuallly appealing, the confusion matrix values were 

calculated but the matrix itself was not presented. Rather, other confusion matrix-based 

metrics (shown in Table6.2) were presented at training, as those are also of great importance 

in performance evaluation. 
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Table 6.1: Confusion Matrix classification labels 

Label Observtion Prediction 
True Postitive (TP) Positive Positive 
False Positive (FP) Negative Positive 
True Negative (TN) Negative Negative 
False Negative (FN) Positive Negative 

 

Through the breakdown above, confusion matrix-based metrics help pinpoint the strengths 

and weaknesses of the classifier when it comes to the types of mistakes it makes with 

certain classes. It is worth mentioning that metrics derived from the confusion matrix are 

used in different approaches to generate a polymorphic performance measure. For 

instance, comparing percision and recall is usually integral. A lot of models are deliberately 

built in such a way that skews the precision-recall relationship to one side rather than the 

other. For example, when the stakes are high, as is the case with disease detection models, 

the recall value is far more important than that of precision’s, as false negatives could be 

detrimental. On the other hand, in content recommendation systems, precision is likely to 

be of more importance than recall, as false negatives are less of a concern. Finally, F1 Score 

is calculated as a harmonic mean (i.e. reciprocal of the arithmetic mean of reciprocals) of 

both precision and recall, taking both metrics into account. 

 
Table 6.2: Accuracy Metrics derived from Confusion Matrices 

Accuracy Precision Recall F1 Score 
 

𝑎𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 

 

 

𝑝𝑟𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑟𝑒𝑐 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑓1 = 2 ×
𝑝𝑟𝑒 × 𝑟𝑒𝑐

𝑝𝑟𝑒 + 𝑟𝑒𝑐
 

 

Other involved measures include Mean Error, where error rates come from the 

CTC loss function. Furthermore, an ASR-specific performance metric used is the Mean 

Label Error Rate. This works the same way as Word Error Rates, which are used very 

frequently when evaluating speech recognition systems.  

6.2 Results and Discussion 

Proving the validity of the initial expectations, different architectures led to fairly different 

results, even when all the other hyperparameters were set constant. This is shown in the 

experiments log (Appendix D). The experimentation stage started off with a couple of 

experiments (namely, EXP01 and EXP02) that yielded highly insufficient results of 8-10%. 

This can be attributed to the topology of the ANN, as those two ANNs in particular have 

narrow architectures with relatively high depth and low number of hidden neurons, 

compared to state-of-the-art applications that usually include 2-4 hidden layers. Another 

experiment (EXP14) was later on added to the list of highly inaccurate experiments, but for 

a different reason. The accuracy EXP14 yielded (i.e. 7%) can be explained by looking at the 

topology, epoch count as well as batch size. Such a DNN with a fairly complex 

architecture, which includes 1200 hidden neurons in total (600 forward LSTMs + 600 
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backward LSTMs), needs to be given the chance to learn properly. A batch size of 20 and 

epoch count of 10 just would not be efficient enough in regards to the training duration for 

the ANN to capture useful patterns. 

 

 Interestingly, even though they had different architectures, the rest of the 

experiments enclosed within Appendix D had similar testing accuracies, falling between 57 

and 67 percent. This is where the need for other evaluation metrics arises. In terms of F1 

Scores, those experiments fall in three different ranges. While EXP05, EXP08 and EXP09 

simply had insufficient F1 Scores of 0.4 on average, EXP07 and EXP10 just proved 

superior with their F1 Scores exceeding 0.7. The rest of the experiments did not present 

any outlying promise, with F1 Scores of almost 5.5 on average.  

 

 It could be argued that the error function used (i.e. CTC) did not need to stay 

constant throughout the experimentation stage. However, the function proved efficient 

and extremely useful in resolving sequence loss measurement problems in applications that 

have varying time frames. Moreover, the Label Error Rate might just not be the optimal 

error rate metric. This could also be argued, as Word Error Rates (the basis of LER) is still 

highly famous in ASR research.  

 

 The signals themselves could also have affected the overall accuracy. Even though 

the TIMIT group made it clear that all samples were saved at 16kHz, this does not 

disprove the inclusion of a downsampling stage during data collection. Downsampling 

could affect the quality of recordings, resulting in more noise that can steer the training 

phase away from optimality. Furthermore, there is a clear imbalance between the male 

speaker count and the female one. This can be a major factor in determining the 

generalisaiton of the model as a whole, and the training of the model to begin with.  

 

 Other variables that could have yielded different results include the number of 

phonemes and the number of MFCC feature vectors. It is still unclear the difference 

between results arrived to with the full English phoneme list (i.e. 61) against those with the 

reduced phoneme dictionary (44). The consistency of using 61 phonemes in all experiments 

might have dissuaded the model from reaching a high accuracy. From a different 

perspective, feature vectors were also kept constant throughout experimentation. Even 

though research has shown that the 26 39-dimentional MFCCs are likely to reach better 

results than the original 13 39-dimensional ones, it still does not make the impact of which 

negligible in terms of overall accuracy.  

 

 It is probably worth mentioning that the experimentation stage was, in fact, not 

completely satisfactory. This is mostly due to the time limitation that was directly affected 

by the research stage as well as implementation before arriving to the experimentation 

phase. With different objectives and variables, the results obtained would have definitely 

been different. 
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Chapter 7 

Reflections and Future Work 
As the project was a lengthy one, certain modifications would have probably made a 

difference in the implementability and efficiency of project components. These “technical 

regrets” can be broken down into three categories; reflections in regards to the research 

stage and approach, reflections on the implementation as well as personal reflections on the 

project as a whole. This chapter discusses the strengths and weaknesses of the project, 

tackling each major component separately. It is worth mentioning that future work refers 

to the approaches expected to fix the drawbacks that the project suffers from.  

7.1 Data Preprocessing 

Although MFCC feature extraction usually suffices in related applications, as discussed in 

Chapter 2, experimenting with more preprocessing sub-components would benefit the 

research a great deal. Experimentation is a major part on the path to proving (or 

disproving) a scientifc hypothesis. Abiding by that statement could be accomplished 

through manipulating the speech signals themselves before extracting the features. For 

instance, reducing background noise is likely to yield better results, or a model that is less 

prone to overfitting (with the right architecture) to say the least. Furthermore, normalising 

volume in such a way that manoeuvres peaks in the speech signal as well as loudness of 

articulation is worth testing, as it could eventually result in better performance in regards to 

variance in amplitude levels. 

 

 When dealing with audio signals, production-level systems usually incorporate 

signal filtering. Dealing differently with frequencies that do not fall within a desired range 

leads to more-easily managed variables in the system as a whole. For example, a low-pass 

filter is likely to attenuate friction noise in audio recordings. On the other hand, a high-pass 

filter introduces the idea of dealing differently with frequencies above a particular limit, 

which could be useful when including other variables of articulation, such as emotion.  

7.2 Data Set Involved 

Even though the TIMIT data set used is probably the most famous one in phonemic 

transcription applications, it could be beneficial to explore other data sets or even integrate 

them together if their formats and structures allow data integration. This could require 

other data mining concepts to be utilised, such as data cleaning. A simpler modification on 

the project would be manipulating the TIMIT data set split. The TIMIT group already split 

the data set into training (75%) and test (25%), making it not a straightforward task to 

adjust the split, especially with all the files and categories involved in parsing through the 

set. This was actually implemented, but it was not tested on splits other than the one 

mentioned in Appendix D (i.e. 75-15-10), mostly due to time limitations. 
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7.3 ANN Hyperparameters 

ANN training vastly depends on the loss function involved. The need for a good loss 

metric (i.e. function) arises from the way backpropagation works — penalising nodes that 

are responsible for a larger portion of the error. The project used the CTC loss function 

due to its spread in similar tasks and ASR in general. Recently, there was an updated 

version of the function (mentioned in section 3.5) called Gram-CTC, that follows the same 

concept, but with the additional functionality of yielding multiple output characters for 

every time frame, improving performance with long-term dependency. Even though the 

function is worth testing, it was not implemented in this project due to lack of 

experimentation time. 

 

Gradient Descent, as an optimisation algorithm, relies heavily on the learning rate. 

Since it was used in tuning the weights during backpropagation to get the performance 

nearer to a minimum-cost, evaluating the performance with different learning rates would 

have benefitted the overall accuracy of the model. The learning rate can sometimes be 

responsible for whether or not the model converges to a minimum cost. Therefore, it is 

recommended in research to tune hyperparameters of training and make observations 

regarding the accuracy rates associated with each. 

7.4 Evaluation Methods 

The TIMIT data set is nothing but rich with a plethora of accents and pronunciations. 

However, improving the generalisation of the model could be a matter of validating on the 

right data. For example, facilitating k-Fold Cross-Validation would be a better measure of 

inference performance. Moreover, class-based accuracy measures like the Confusion Matrix 

are a good way of deciding on the optimal training by being able to identify the model’s 

performance in regards to particular classes. Since this project includes classes that have 

relatively unuseful labels to us in terms of readability (e.g. “ix”, “hh”, “ax-h”, “uw”, etc), it 

was excluded from this project. However, visualising the patterns in classification (i.e. the 

diagonal of the confusion matrix) could be of great help — given the right tools. For 

example, visualising the confusion matrix on a monitor rather than on paper. Therefore 

inclusion of such visualisation technique is worth testing out during the training process.  

7.5 The Mobile Application 

It is worth emphasising on that the model deployment (or absence of) into the application 

is the biggest issue faced with the project. This led the project to not be usable or tested by 

other people, due to the missing communication between the model and the applciation. 

Had there been more time to deal with the issue, there would have been changes regarding 

different causes of the problem. For instance, unifying the Cloud Computing platform 

APIs into those that belong to the same platform is a must. This bad practice of involving 

multiple cloud computing platforms (i.e. GCP and AWS) is a major stigma —unfortunately 

— in the performance of the application. It is worth mentioing that the application also 

suffers from a security-related problem, as it has the GCP and AWS authentication files 
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compressed into it. This is a major security breach in production-level systems. However, 

the purpose of the application was imagined to be a “proof of point” rather than a 

reproducable product.  

 

 Fixing the model deployment problem that was still unresolved, in real production-

level systems, usually takes the approach of having a server instance that deals with user 

and app authentication, and another instance for actually running the code on the Cloud. 

This includes two steps of SSH requests. One request is initiated by the application to 

authenticate to the Cloud, while the other is done from the authentication server instance 

to the actual Cloud to execute the code and get results — much like using the Terminal.  

 

 Although the project in ubiquity does not suffer from absence of results, it does 

lack a way of visualising those results. This is where the original objectives and the final 

outcomes of the project face a relative mismatch. The core functionality as well as the 

components proposed were attempted, but some of them were unsuccessful. For instance, 

developing user profiles through which users can visualise their progress in the learning 

journey was not implemented. These profiles were to be a tool of letting users see their 

highest and average pronunciation accuracies over the time they have been using the 

application. Moreover, speaker recognition as well as voice activation were a proposed 

feature that was not implemented either. It was actually tested out using Microsoft Azure, 

since it provides an API with neat documentation for that purpose. However, including yet 

another Cloud Computing platform — with its own authentication scripts — did not look 

like such a bright idea. The application was dealing with enough threads running 

simultaneously as is.  

 

 The mobile application could also have introduced more flexibility in performance 

to the user. For example, choices regarding personal preference in terms of accent and 

gender of the speaker (i.e. the API) would have made the app more usable, enriching user 

experience. Furthermore, multi-language functionality is an aspect that can have its own 

research and implementation stages, for the benefit of the user. With such functionality, 

language detection could also make the difference in increasing the usability of the app.  

 

 Finally, components involving complex multithreading need to be minimalised and 

have efficient time-based and process-based communication. Threads that last for as long 

as the execution can be merged into a thread that regulates access and functionality based 

on the process at hand. It is important to mention that multithreading cannot be neglected, 

as Android forces authentication scripts to run in parallel to the UI thread. A final thought 

would be to better the manner in which the code executes, both in the application and on 

the Cloud, in such a way that imporves time complexity. In the same context, improving 

space complexity of the model is not of high priority, as the frozen training checkpoint is 

usually not large in terms of memory. 
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7.6 Personal Reflections 

The most intellectually-exhaustive stage of the project was the research, incorporating 

multiple challenges and taking up much of the time spent on the project, especially in the 

first semester. A problem faced by junior researchers is the excitement of seeing their 

knowledge actually be implemented. Unfortunately, this led to “clumsy” intermediate 

implementations, that were not included in the final product but took up proportionally a 

substanial amount of time during research. For instance, learning how MFCC feature 

extraction works did not do the trick, but rather did implementing the feature extractor 

itself. Moreover, algorithms like Dynamic Time Warping, signal autocorrelation, and 

acoustic fingerprinting were also implemented, even though they were not included in the 

final product. It is worth mentioning that this helped me facilitate my knowledge through 

tangible manifestations. But, it did indeed take up much of the time. 

 

 The project was one of the biggest challenges I faced in my academic life. 

However, with all honesty, it was probably the most exciting. Running in circles, not 

knowing exactly what to do next, but knowing enough to believe that the answer is in a 

book or a research paper that I have not got to yet was what kept me going throughout the 

research stage. In fact, I actually took pride in and enjoyed writing the report. Everything 

mentioned in this report was going around in my head for months, waiting for a chance to 

be expressed in words. Within the same context, the amount of research papers read 

throughout the process is too large for me to even be confident talking about the mobile 

application. I was always focused on the research and never really enjoyed implementing 

the mobile application — contrary to intermediate implementations. I guess now I know 

exactly where I lie on the Computer Science spectrum. 
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Conclusion 
 

Computer-Assisted Language Learning is growing bigger than ever, with the 

frequent advances in Deep Learning and its applications. This project goes over an 

application that utilises two major aspects of Automatic Speech Recognition through a 

Deep Learning approach; Phonemic Transcription and Goodness of Pronunciation (GoP) 

scoring. The former being limited to the speakers’ dialect when the data was collected, and 

the latter being often challenging to researchers, resulting in applications that only work on 

fixed sets of words. The project aims to help students learning English fix their 

pronunciations. This is done through a DNN that transcribes speech into phonemes and 

matches the learner’s pronunciation to that of the API’s through sequence and string 

comparison algorithms, giving the user a similarity indicator between the two. 
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Appendix A 

Deep Learning Foundations 

A1 Biological Background 

It makes all the difference to think that the one thing that defines our effectiveness as 

human beings is the thing that we understand the least  —  the human brain. A set of 

billions of small, heavily interconnected components that exchange electrical signals whose 

values determine what the surrounding neurons should exchange with their neighbors. This 

master synchronicity depicts what thought and memory in the brain are. The building block 

of which (i.e. the neuron) is what set the start of a long-lasting facination with the topic 

among researchers. 

A2 The Single-layer Perceptron 

The early theoretical foundations of the field of Deep Learning were set on the idea of 

having a hardware-algorithm that is able to learn. Funded by the United States Army, Frank 

Rosenblatt introduced the world to the first utilisation of the Perceptron concept back in 

1958, which he defined as a “hypothetical nervous system” [15]. A single-layer perceptron 

(i.e. basic neuron) is in fact a linear classifier that separates an input into two categories 

with a straight line. This input is dealt with as a linear function that follows: 

 

𝑦 = 𝑤𝑥 + 𝑏 
 

Where 𝑤 is the weight value of the link between the input 𝑥 and the neuron. 𝑏 is a bias 

term that allows more flexibility for the Activation Function. The then-newfound 

manifestation of the perceptron concept had several shortcomings. From the applicability 

perspective, it was very limited, mostly due to the fact that it only supports linear 

activations.  

A3 Artificial Neural Networks 

Numerous neuroscientists and computer scientists who understood the power of the 

human brain realised that introducing the world to an artificial form of this biological 

masterpiece could be anything but short of benefit — resulting in Artificial Neural Networks 

(ANNs) . This artificial depiction actually comprises of interconnected perceptrons (namely, 

neurons). These neurons are separated into layers that feed into each other in a scheme that 

satisfies the network architecture followed. An artificial neuron is shown in Figure A1. 

Technically, any ANN that has more than one hidden layer follows the concept of Deep 

Learning. It is worth mentioning that a lot of people argue that the resemblance between 

biological and artificial neural networks stops at this point, emphasising on the fact that an 
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ANN only might look like any very small part of the 

brain, but doesn’t necessarily act like it, attributing 

that to the fact that we still do not fully understand 

how the brain works  in a thorough manner. 

Although it came at substantial computational and 

memory-related complexities, this simple utilisation 

of the idea of a perceptron has revolutionised the 

world of computing.  

 

In Machine Learning, the objective is 

always to build something that generalises well [16] 

(i.e. making it able to make a hypothesis about new inputs that it has never seen before). The 

interconnectedness of neurons fixed the shortcoming mentioned in A2, by making the 

ANN able to solve nonlinear classification problems, broadening the plethora of 

applications that can utilise this concept. The idea lies behind that we can introduce some 

non-linear complexity to the algorithm and try perfecting  — to an extent —  the newly 

formed combination. Therefore, the formula we introduced earlier can be written as: 

 

𝑎𝑗 = ∑ 𝑤𝑗𝑖 ∙  𝑥𝑖

𝐷

𝑖=0

 

 

Therefore, in Figure A1, the objective neuron takes input values that can be features or 

outputs from previous neurons. It calculates the objective function value (∑) and inputs 

the result into the activation function. The figure demonstrates that with the Threshold 

function. The output of the activation function determines the output of the neuron into 

the succeeding network components. 

A4 Types of ANNs 

ANNs hace different types and formations that depend on two things; network 

architecture and activations. Network architecture (i.e. topology) is how the neural network 

is designed. This includes the number of neurons/nodes, the number of layers and how 

those neurons are interconnected. Activations include the functions that neurons use to 

determine what output to feed into their neighboring neurons. Different types of ANNs 

are conceptually similar, as they follow the same theoretical background and require mostly 

the same knowledge. However, they are different in the way they are applied. For example, 

most image classification applications include a form of a Convolutional Neural Network 

(CNN) due to convolution’s effectiveness in Image Processing as a field [17]. On the other 

hand, Speech Recognition applications rely heavily on Recurrent Neural Networks (RNNs) 

as such applications require an architecture that represents sequential data patterns in a 

fruitful manner. 

Figure A1: Single-layer perceptron 
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A5 Backpropagation 

Since the essence of Machine Learning is to build a hypothesis function whose 

generalisation is sufficient, Deep Learning is no different. This generalisability of the model 

at hand comes from good training practice to start with. ANNs follow the same principle. 

However, training an ANN usually includes more steps than simple Machine Learning 

models. Since ANNs introduce nonlinearity in applications, they need a more complex 

learning algorithm: Backpropagation. The basic idea of backpropagation as a learning 

algorithm is the repeated application of the chain rule to compute the influence of each 

weight in the network with respect to an arbitrary error function [18]. The way 

backpropagation operates is that it makes the ANN learn by “penalising” the neurons 

whose values relatively caused the largest portion of the total network error. This 

functionality, provided by the learning algorithm, returns (i.e. propagates, backwards) — in 

a sense — the error of the network to its corresponding neurons. Hence, the name — 

backpropagation.  Simply put, the goal is always to achieve proper tuning of the weights to 

ensure lower error rates, making the model reliable by increasing its generalisation to new 

inputs.  

A6 Activation Functions 

Activations functions are what truly introduces nonlinearity into ANNs. In Deep Learning, 

the hypothesis function is extended to include an activation function that takes as input the 

sum of features X, weighted by the link weights in the network, and returns a value that 

gets passed onto the next network component. In principle, activation functions are chosen 

based on the application. Types of activation functions include Threshold, Sigmoid, 

Rectifier, Hyperbolic Tangent, etc. It is important to note that, whatever its type is, an 

activation function should always be differentiable, in order for training (backpropagation, 

more specifically) to work.  

 

𝑧𝑗 = ℎ(𝑎𝑗)                  

     = ℎ(∑ 𝑤𝑗𝑖 ∙  𝑥𝑖

𝐷

𝑖=0

) 

A7 Error Functions 

An error rate (i.e. loss) is a measure of how off the model prediction is. In most applications, 

it is calculated as the difference between the model prediction and the actual output present 

in the data set. This follows the generic formula: 

 

𝐽(𝑊) = 𝑦 − �̂� 

 

Where J(W) is the loss resulting from inference with weight vector W. y is the model’s 

output and �̂� is the expected output. Loss/error functions have different types, each of 
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which could give a different error for the same prediction. Choice of error functions highly 

depends on the problem at hand. For instance, Mean Squared Error function is frequently 

used in regression problems, and Cross Entropy is conventionally used in classification. 

A8 Optimisation Algorithms 

The loss of an inference is backpropagated through the model in order to tweak the 

weights associated with nodes, and the biases associated with layers. This requires an 

optimisation algorithm, such as Gradient Descent (GD), which includes calculating the 

gradient of the data set and updating the weights in the direction opposite to the gradient. 

In gradient descent, we can imagine the quality of our network’s predictions (as a function 

of the weight/parameter values) as a landscape. The hills represent locations (parameter 

values or weights) that give a lot of prediction error; valleys represent locations with less 

error. We choose one point on that landscape at which to place our initial weight. We then 

can select the initial weight based on domain knowledge (if we’re training a network to 

classify a flower species we know petal length is important, but color isn’t). Or, if we’re 

letting the network do all the work, we might choose the initial weights randomly. 

 

The purpose is to move that weight downhill, to areas of lower error, as quickly as 

possible. An optimization algorithm like gradient descent can sense the actual slope of the 

hills with regard to each weight; that is, it knows which direction is down. Gradient descent 

measures the slope (the change in error caused by a change in the weight) and takes the 

weight one step toward the bottom of the valley. It does so by taking a derivative of the 

loss function to produce the gradient. The gradient gives the algorithm the direction for the 

next step in the optimization algorithm, as depicted in: 

 

Algorithm A1: Gradient Descent 

    Input: Y, Θ, X, α, tolerance, max iterations 
    Output: Θ 
        for i = 0; i < max iterations; i++ do 
            current cost = Cost(Y,X, Θ) 
            if current cost < tolerance then 
                break 
            else 
                gradient = Gradient(Y,X, Θ) 

                𝜃𝑗   ⃪ 𝜃𝑗 −  α ∙  gradient  
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Appendix B 

Phonemic Similarity Measures 
In Automatic Speech Recognition, an essential step that a lot of applications incorporate is 

Grapheme-to-Phoneme (G2P) or Phoneme-to-Grapheme (P2G) conversion. The former is usually 

directly involved in the building of ASR-prepared data sets. On the other hand, the latter is 

usually made use of in ASR applications themselves. When it comes to evaluating the 

similarity between two sequences of phonemes, a common measure is the Phoneme Error 

Rate (PER). ASR applications usually need such a metric in order to make an informed 

determination on the accuracy of the speech perceived by the application compared to the 

expected one residing in the training set. PER suffers from the inadueqacy of substitution 

cost representation, as it treats every difference between a pair of phonemes equally.   

 

In this chapter, the most common phoneme matching approaches are scrutinised, 

to arrive to an understanding of the effectiveness of popular PER calculation methods. The 

need for deciding on an approach of such type arises from the fact that there needs to be a 

measure of determining the similarity between speech representations. This is where the 

actual similarity rate or percentage is calculated and presented, making the choice of a 

related algorithm crucial to the generalisation of the application of this project as a whole. 

 

B1 Levenshtein Error Distance 

Phoneme matching tasks are fairly similar to those of string matching. Both types of tasks 

include finding the error between two sequences of speech segments whose order is of 

great importance. One of the most commonly used algorithms in the context of string 

matching is the Levenshtein Error Distance (LD) [50], which takes a fairly different apporach. 

LD computation tries to match one label sequence with another by calculating the 

minimum number of one-symbol operations that lead to the two sequences being equal. 

Operations include additions, deletions and substitutions. LD yields a positive integer that 

is highly dependent on the string length. This means that matching the sequence [b, a, r] 

with the sequence [f, o, o] will actually result in the same LD value as matching  [b, e, a, u, 

t, i, e, s] with [b, e, a, u, t, i, f, u, l]. However, getting the percentage of similarity would then 

be as simple as getting the inverse (1/LD) of the result. 

 

B2 Phonological Edit Distance 

Originally proposed by Sander et al. [49], Phonological Edit Distance (PED) follows the steps 

of LD in one aspect, but it takes a different approach in another. Similarity between the 

two is posed through the fact that PED depends on how many one-symbol changes it 

takes for one sequence to match the other. Notwithstandingly, the changes it takes are not 
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of equal importance, thus, PED uses a system of weighted changes that depend on featural 

similarity of sequence segments. 

 

B3 Khorsi Similarity Metric 

String matching through modification counting does not usually do justice to the 

importance of certain characters in some languages. For example, in languages that rely 

heavily on words that are a result of modifications performed on other words (i.e. 

Inflectional Lnguages), some letters in the word could have a greater importance than others. 

Khorsi’s [51] delve into the topic resulted in a lightweight, unsupervised similarity metric 

that deals with all characters of a word — with different weights. The algorithm follows the 

formula: 

 

∑ 𝑙𝑜𝑔 (
1

𝑓𝑟𝑒𝑞(𝐿𝐶𝑆(𝑤1, 𝑤2)[𝑖])
) − ∑ 𝑙𝑜𝑔 (

1

𝑓𝑟𝑒𝑞(𝐿𝐶𝑆(𝑤1, 𝑤2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ [𝑖])
)

||𝐿𝐶𝑆(𝑤1,𝑤2)||

𝑖=1

 

||𝐿𝐶𝑆(𝑤1,𝑤2)||

𝑖=1

 

 

where, 

  w1, w2 are two words/strings 

LCS(w1, w2) is the Longest Common Shared Sequence of symbols between the 

two words. 

 

As shown above, the method takes the inverse of the frequency of occurrence, and sums 

up the log corresponding to it, for every letter in the LCS between two strings. The method 

then takes the non-shared letters and subtracts the sum of the log of the inverse of the 

frequency of them from the preceeding value.  

 

B4 Trigram Comparison 

Phonemic similarity measurement approaches could include those that are dictionary-

based. For instance, N-gram mathods include dependency on the different combinations of 

adjacent words or letters of length N. Trigram Comparison is a case of N-gram — a 

contiguous sequence of N items from a given sample. Even though computing a value for 

the similarity indicator using Trigram Comparison is as easy as dividing the number of 

matching trigrams in both strings by the number of unique trigrams, it suffers from the 

same issue usually faced with LD — strong dependency on string length. This limitation 

leads to lower similarity rates in short strings than those in long ones, when the strings have 

one or two different trigrams. 
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B5 Jaro-Winkler Distance 

While methods like LD attempt to match one string to the other, the Jaro-Winkler Distance 

metric attempts to merely compare them, giving more weight to set prefixes [52]. It 

follows the observation that differences between two strings in the early characters in the 

sequences are of more significance to the similarity-indicative value than those differences 

near the end of the sequences of characters. This bias towards the beginning might not 

work very well in phoneme recognition tasks (at least without being combined with another 

algorithm). This could be attributed to the fact that phonemes, being originally based on 

sounds rather than word segments — as is the case with syllables — might not provide 

direct transcriptions for the speech. In other words, sounds in the beginning of words do 

not necessarily provide a lot of information about the utterance as a whole. Therefore, 

always penalising errors in early characters could lead to an imbalance in results and in 

similarity measurement as a process. 
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Appendix C 

Progress and Project Management 

C1 Time Management 

Although the progress was fluctuating throughout the first semester due to unexpected 

obstacles in the research stage regarding the actual implementability of speech comparison 

through only signal analysis, most of the tasks included in the original project proposal 

were executed successfully. However, this was at the expense of a couple of postponed 

tasks (namely, B02 and B03 in Table C1). On the other hand, the project was run fairly 

consistently with the plan in the second semester. Table C1 showcases the task list 

breakdown throughout the academic year. Since the beginning of the project, the tasks 

were labelled based on their respective category of work. Tasks were labelled C for 

university Commitment, R for Research-based task, B for Build (i.e. implementation-related) 

and E for Evaluate. These tasks were kept track of using a note-taking program that also 

played the role of a brainstorming wall that is revised and updated regularly. Figure C1 

illustrates this stormboard. 

 
Table C1: Project tasks list 

# Task Title Projected 

End Date 

Actual 

End Date 

Status 

C01 Complete Project Proposal 14-Oct-18 13-Oct-2018 Complete 

R01 Review popular speech similarity 

measures 

21-Oct-18 10-Nov-18 Complete 

B01 Implement speech feature extraction 28-Oct-18 15-Nov-18 Complete 

B02 Implement speech comparison 04-Nov-18 Postponed till the 

second semester B03 Design and implement mobile app 11-Nov-18 

R02 Research speech signal segmentation 25-Nov-18 25-Nov-18 Complete 

B05 Implement speech signal 

segmentation 

02-Dec-18 09-Dec-18 Complete 

C02 Write Interim Report 15-Dec-18 10-Dec-18 Complete 

C03 Study break 20-Jan-19 18-Jan-19 Complete 

E01 Evaluate model performance 27-Jan-19 18-Apr-19 Complete 

B02 Implement speech comparison 11-Feb-19 12-Dec-18 Complete 

B03 Design and implement mobile app 20-Feb-19 09-Feb-19 Complete 

E02 Test app 27-Mar-19 17-Apr-19 Complete 

B05 Fix leftover bugs 27-Mar-19 15-Apr-19 Complete 

E03 Final implementation touches 31-Mar-19 17-Apr-19 Complete 

C04 Write Final Report 18-Apr-19 17-Apr-19 Complete 
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Figure C1: Project Stormboard 

 

The chart in Figure C2 demonstrates the overall work timeline compared to expected 

durations. It is visible how the project was split into equal segments (7-weeks each) for 

most tasks. This made the project easier to track, as most weeks had only one major 

objective. 

 

 

 
Figure C2: Work Timeline Gantt Chart 

 

As mentioned earlier, most performance fluctuations took place in the first semester rather 

than the second. This is apparent in Figure C3. Although the actual remaining days’ work 

was higher than the expected one at most times, it was always close to the optimal timeline 
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set from the beginning. It is worth mentioning that the project took about 30% more time 

than expected, mostly due to unexpected issues such as the model deployment matter 

discussed in Chapter 5, section 5. 

 

 
 

Figure C3: Workload Burndown Chart (in days) 

 

C2 Resource Management 

The research aspect of the project started early. In fact, references were being bookmarked 

and managed since July 2018 using the Mendeley software (shown in Figure C4), which 

provides an inter-operable environment that can be used through Web browsers as well as 

Desktop applications. The need for a research management platform arose further along 

the way, where there needed to be made links among some key research papers in the field. 

Having an all-platform research repository definitely made the difference here. 
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Figure C4: Research management platform (Mendeley) 

 

From another perspective, source code also needed to be kept safe at all times. Throughout 

the development of this project, the source code was pushed onto two private GitHub 

repositories — one for the model code and one for the mobile app (shown in Figure C5). 

The model repository was linked straight to Visual Studio Code, while the mobile app’s 

repository was linked to Android Studio, as it was the main Integrated Development 

Environment used. 

 

 
 

Figure C5: Involved GitHub Repositories 
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Appendix D 

Experimental Trials 
EXP01 

Hidden layers 5 Training accuracy 8% 

Nodes per hidden layer 20 Validation accuracy 8% 
MFCC feature vectors 26 Testing accuracy 8% 

logEnergy True Average Precision 0.112 

Loss Function CTC Average Recall 0.073 
Epochs 20 F1 Score 0.088 

Batch size 30 Training — blue. Validation — orange.  

Batches per epoch 739 

Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 3 hours 

Mean training loss 140.8 
Mean training Label Error 
Rate 

0.92 

Mean testing loss 132.9 

Mean testing Label Error 
Rate 

0.92 

 
 

EXP02 

Hidden layers 7 Training accuracy 9% 
Nodes per hidden layer 20 Validation accuracy 10% 

MFCC feature vectors 26 Testing accuracy 8% 

logEnergy True Average Precision 0.094 
Loss Function CTC Average Recall 0.107 

Epochs 20 F1 Score 0.101 
Batch size 20 Training — blue. Validation — orange.  

Batches per epoch 1108 

Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 4 hours 
Mean training loss 132.5 

Mean training Label Error 
Rate 

0.91 

Mean testing loss 129.6 

Mean testing Label Error 
Rate 

0.92 
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EXP03 

Hidden layers 4 Training accuracy 65% 
Nodes per hidden layer 100 Validation accuracy 62% 

MFCC feature vectors 26 Testing accuracy 61% 
logEnergy True Average Precision 0.689 

Loss Function CTC Average Recall 0.562 
Epochs 10 F1 Score 0.619 

Batch size 10 Training — blue. Validation — orange.  

Batches per epoch 2217 
Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 9 hours 

Mean training loss 42.3 

Mean training Label Error 
Rate 

0.35 

Mean testing loss 50.8 
Mean testing Label Error 
Rate 

0.39 

 

 

 

EXP04 

Hidden layers 2 Training accuracy 78% 
Nodes per hidden layer 100 Validation accuracy 74% 

MFCC feature vectors 26 Testing accuracy 66% 

logEnergy True Average Precision 0.803 
Loss Function CTC Average Recall 0.551 

Epochs 20 F1 Score 0.654 
Batch size 20 Training — blue. Validation — orange. 

Batches per epoch 1108 

Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 10 hours 
Mean training loss 23.1 

Mean training Label Error 
Rate 

0.22 

Mean testing loss 45.3 

Mean testing Label Error 
Rate 

0.34 
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EXP05 

Hidden layers 2 Training accuracy 61% 
Nodes per hidden layer 75 Validation accuracy 56% 

MFCC feature vectors 26 Testing accuracy 57% 
logEnergy True Average Precision 0.414 

Loss Function CTC Average Recall 0.509 
Epochs 20 F1 Score 0.457 

Batch size 128 Training — blue. Validation — orange.  

Batches per epoch 173 
Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 10 hours 

Mean training loss 51.68 

Mean training Label Error 
Rate 

0.39 

Mean testing loss 56.39 
Mean testing Label Error 
Rate 

0.43 

 

 

 

EXP06 

Hidden layers 2 Training accuracy 67% 
Nodes per hidden layer 150 Validation accuracy 71% 

MFCC feature vectors 26 Testing accuracy 66% 

logEnergy True Average Precision 0.643 
Loss Function CTC Average Recall 0.589 

Epochs 10 F1 Score 0.615 
Batch size 20 Training — blue. Validation — orange. 

Batches per epoch 1108 

Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 5 hours 
Mean training loss 43.5 

Mean training Label Error 
Rate 

0.33 

Mean testing loss 44.23 

Mean testing Label Error 
Rate 

0.34 
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EXP07 

Hidden layers 2 Training accuracy 69% 
Nodes per hidden layer 150 Validation accuracy 76% 

MFCC feature vectors 26 Testing accuracy 67% 
logEnergy True Average Precision 0.695 

Loss Function CTC Average Recall 0.721 
Epochs 10 F1 Score 0.708 

Batch size 10 Training — blue. Validation — orange.  

Batches per epoch 2217 
Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 9 hours 

Mean training loss 38.32 

Mean training Label Error 
Rate 

0.31 

Mean testing loss 43.61 
Mean testing Label Error 
Rate 

0.33 

 

 

 

EXP08 

Hidden layers 3 Training accuracy 64% 
Nodes per hidden layer 75 Validation accuracy 62% 

MFCC feature vectors 26 Testing accuracy 61% 

logEnergy True Average Precision 0.536 
Loss Function CTC Average Recall 0.339 

Epochs 10 F1 Score 0.415 
Batch size 32 Training — blue. Validation — orange.  

Batches per epoch 692 

Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 2 hours 
Mean training loss 43.89 

Mean training Label Error 
Rate 

0.36 

Mean testing loss 49.61 

Mean testing Label Error 
Rate 

0.39 
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EXP09 

Hidden layers 2 Training accuracy 61% 
Nodes per hidden layer 200 Validation accuracy 58% 

MFCC feature vectors 26 Testing accuracy 60% 
logEnergy True Average Precision 0.376 

Loss Function CTC Average Recall 0.449 
Epochs 20 F1 Score 0.386 

Batch size 25 Training — blue. Validation — orange. 

 

Batches per epoch 887 
Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 23 hours 

Mean training loss 47.63 

Mean training Label Error 
Rate 

0.39 

Mean testing loss 51.25 
Mean testing Label Error 
Rate 

0.40 

 

 

 

EXP10 

Hidden layers 4 Training accuracy 67% 
Nodes per hidden layer 100 Validation accuracy 63% 

MFCC feature vectors 26 Testing accuracy 66% 

logEnergy True Average Precision 0.866 
Loss Function CTC Average Recall 0.716 

Epochs 35 F1 Score 0.784 
Batch size 32 Training — blue. Validation — orange. 

Batches per epoch 692 

Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 26 hours 
Mean training loss 41.19 

Mean training Label Error 
Rate 

0.33 

Mean testing loss 43.06 

Mean testing Label Error 
Rate 

0.34 
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EXP11 

Hidden layers 3 Training accuracy 64% 
Nodes per hidden layer 75 Validation accuracy 59% 

MFCC feature vectors 26 Testing accuracy 58% 
logEnergy True Average Precision 0.644 

Loss Function CTC Average Recall 0.492 
Epochs 20 F1 Score 0.557 

Batch size 32 Training — blue. Validation — orange. 

Batches per epoch 692 
Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 4.5 hours 

Mean training loss 45.09 

Mean training Label Error 
Rate 

0.36 

Mean testing loss 54.46 
Mean testing Label Error 
Rate 

0.42 

 

 

 

EXP12 

Hidden layers 3 Training accuracy 60% 
Nodes per hidden layer 150 Validation accuracy 56% 

MFCC feature vectors 26 Testing accuracy 59% 

logEnergy True Average Precision 0.719 
Loss Function CTC Average Recall 0.536 

Epochs 15 F1 Score 0.614 
Batch size 25 Training — blue. Validation — orange. 

Batches per epoch 1108 

Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 9 hours 
Mean training loss 50.78 

Mean training Label Error 
Rate 

0.40 

Mean testing loss 52.09 

Mean testing Label Error 
Rate 

0.41 
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EXP13 

Hidden layers 3 Training accuracy 65% 
Nodes per hidden layer 100 Validation accuracy 64% 

MFCC feature vectors 26 Testing accuracy 61% 
logEnergy True Average Precision 0.633 

Loss Function CTC Average Recall 0.681 
Epochs 20 F1 Score 0.656 

Batch size 20 Training — blue. Validation — orange. 

 

Batches per epoch 1108 
Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 6.5 hours 

Mean training loss 49.96 

Mean training Label Error 
Rate 

0.35 

Mean testing loss 53.77 
Mean testing Label Error 
Rate 

0.39 

 

 

 

EXP14 

Hidden layers 4 Training accuracy 5% 
Nodes per hidden layer 150 Validation accuracy 5% 

MFCC feature vectors 26 Testing accuracy 7% 

logEnergy True Average Precision 0.031 
Loss Function CTC Average Recall 0.007 

Epochs 10 F1 Score 0.011 
Batch size 20 Training — blue. Validation — orange. 

Batches per epoch 1108 

Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 21 hours 
Mean training loss 144.45 

Mean training Label Error 
Rate 

0.95 

Mean testing loss 144.99 

Mean testing Label Error 
Rate 

0.93 
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EXP15 

Hidden layers 4 Training accuracy 62% 
Nodes per hidden layer 75 Validation accuracy 57% 

MFCC feature vectors 26 Testing accuracy 57% 

logEnergy True Average Precision 0.525 
Loss Function CTC Average Recall 0.599 

Epochs 15 F1 Score 0.559 
Batch size 15 Training — blue. Validation — orange. 

Batches per epoch 1478 

Data split (Train. - Val. - 
Test.) 

(75 - 15 - 10) 

Machine specs CPU / 3.4GHz / 
8GB RAM 

Training duration 13 hours 
Mean training loss 48.80 

Mean training Label Error 
Rate 

0.38 

Mean testing loss 54.66 

Mean testing Label Error 
Rate 

0.43 

 

 

 

 


